Skip to main content
Log in

Changes in Allele Frequencies at Storage Protein Loci of Winter Common Wheat under Climate Change

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

Allele frequencies at the storage protein loci Gli-A1, Gli-B1, Gli-D1, Glu-A1, Glu-B1, Glu-D1, and Gli-A3, as well as the population structure, were studied in groups of winter common wheat cultivars developed in different periods of time in two soil and climate zones: the Forest-Steppe of Ukraine (at the Myronivka Remeslo Institute of Wheat (MIW)) and the Steppe of Ukraine (at the Plant Breeding and Genetics Institute (PBGI)), a total of 275 cultivars. The cultivars were grouped based on registration time: before 1996 (period 1), in 1996–2010 (period 2), and after 2010 (period 3). Differences in average annual temperature in the periods of development of these cultivars amounted 0.6 and 0.7°C between periods 1 and 2, and as high as 0.9 and 1.0°C between periods 2 and 3 for the Forest-Steppe and Steppe zones, respectively. In the groups of winter wheat cultivars of both MIW and PBGI developed after 2010, specific sets of predominant alleles were basically retained. At the same time, there was a clear relationship between changes in frequencies of certain alleles in cultivar groups and annual temperature changes in the locations where selection of genotypes (future cultivars) had taken place during breeding. The most prominent changes in allele frequencies were revealed for the cultivars developed in the Steppe of Ukraine: for the PBGI cultivars such temporal changes were detected for 10 alleles at 4 loci. Probably this is due to the fact that in the Steppe zone the annual temperature has reached the high absolute value, and new coadaptive gene associations are being formed and selected during breeding. The increased contribution of wheat germplasm derived from regions with higher temperature to winter common wheat breeding in the Steppe zone might be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Grigg, D., The pattern of world protein consumption, Geoforum, 1995, vol. 26, no. 1, pp. 1–17. https://doi.org/10.1016/0016-7185(94)00020-8

    Article  Google Scholar 

  2. Shewry, P.R. and Hey, S.J., The contribution of wheat to human diet and health, Food Energy Secur., 2015, vol. 4, no 3, pp. 178–202. https://doi.org/10.1002/fes3.64

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sozinov, A.A., Protein Polymorphism and Its Importance for Genetics and Breeding, Moscow: Nauka, 1985.

    Google Scholar 

  4. Vereijken, J.M., Klostermann, V.L.C., Beckers, F.H.R., Spekking, W.T.J., and Graveland, A., Intercultivar variation in the proportions of wheat protein fractions and relation to mixing behaviour, J. Cereal. Sci., 2000, vol. 32, no. 2, pp. 159–167. https://doi.org/10.1006/jcrs.2000.0333

    Article  CAS  Google Scholar 

  5. Payne, P.I., Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality, Annu. Rev. Plant Physiol., 1987, vol. 38, pp. 141–153.

    Article  CAS  Google Scholar 

  6. Metakovsky, E., Melnik, V., Rodriguez-Quijano, M., Upelniek, V., and Carrillo, J.M., A catalog of gliadin alleles: polymorphism of 20th-century common wheat germplasm, Crop J., 2018, vol. 6, no. 6, pp. 628–641. https://doi.org/10.1016/j.cj.2018.02.003

    Article  Google Scholar 

  7. McIntosh, R.A., Catalogue of Gene Symbols, Gene Catalogue, 2013. http:www.shigen.nig.ac.jp/wheat/ komugi/genes/download.jspMacGene.

  8. Metakovsky, E.V., Chernakov, V.M., Upelniek, V.P., Redaelli, R., Dardevet, M., Branlard, G., and Pogna, N.E., Recombination mapping of ω-gliadin-coding loci on chromosome 1A of common wheat: a revision, J. Genet. Breed., 1996, vol. 50, pp. 277–286.

    CAS  Google Scholar 

  9. Pogna, N.E., Metakovsky, E.V., Redaelli, R., Raineri, F., and Dachkevitch, T., Recombination mapping of Gli-5, a new gliadin-coding locus on chromosome 1A and 1B in common wheat, Theor. Appl. Genet., 1993, vol. 87, pp. 113–121. https://doi.org/10.1007/BF00223754

    Article  CAS  PubMed  Google Scholar 

  10. Jackson, E., Holt, L., and Payne, P., Glu-B2, a storage protein locus controlling the D group of LMW glutenin subunits in bread wheat (Triticum aestivum), Genet. Res., 1985, vol. 46, no. 1, pp. 11–17. https://doi.org/10.1017/S0016672300022412

    Article  CAS  Google Scholar 

  11. Sobko, T.A., Identification of a locus controlling synthesis of alcohol-soluble proteins of winter wheat endosperm, Visn. Silskohospodar. Nauki, 1984, no. 7, pp. 78–80.

  12. Metakovsky, E.V., Branlard, G., Chernakov, V.M., Upelniek, V.P., Redaelli, R., and Pogna, N.E., Recombination mapping of some chromosome 1A-, 1B-, 1D- and 6B-controlled gliadins and low-molecular-weight glutenin subunits in common wheat, Theor. Appl. Genet., 1997, vol. 94, no. 6–7, pp. 788–795. https://doi.org/10.1007/s001220050479

    Article  CAS  Google Scholar 

  13. Sozinov, A., Sozinov, I., Kozub, N., and Sobko, T., Stable gene associations in breeding and evolution of grasses, in Evolutionary Theory and Processes: Modern Perspectives. Papers in Honor of Eviatar Nevo, Wasser, S.P., Ed., Kluwer Acad. Publ., 1999, pp. 97–113. https://doi.org/10.1007/978-94-011-4830-6_7

  14. Kozub, N.A., Sozinov, I.A., Sobko, T.A., Kolyuchii, V.T., Kuptsov, S.V., and Sozinov, A.A., Variation at storage protein loci in winter common wheat cultivars of the Central Forest-Steppe of Ukraine, Cytol. Genet., 2009, vol. 43, no. 1, pp. 55–62. https://doi.org/10.3103/S0095452709010101

    Article  Google Scholar 

  15. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, no. 5259, pp. 680–685.

    Article  CAS  Google Scholar 

  16. Kozub, N.A., Sozinov, I.A., Karelov, A.V., Blume, Ya.B., and Sozinov, A.A., Diversity of Ukrainian winter common wheat varieties with respect to storage protein loci and molecular markers for disease resistance genes, Cytol. Genet., 2017, vol. 51, no. 2, pp. 117–129. https://doi.org/10.3103/S0095452717020050

    Article  Google Scholar 

  17. Payne, P.I. and Lawrence, G., Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat, Cer. Res. Commun., 1983, vol. 11, pp. 29–34.

    Google Scholar 

  18. Wrigley, C.W., Asenstorfer, R., Batey, I.L., Cornish, G.B., Day, L., Mares, D., and Mrva, K., The biochemical and molecular basis of wheat quality, in Wheat: Science and Trade, Carver, B.F., Ed., Oxford, UK: Wiley–Blackwell, 2009, ch. 21, pp. 495–520.

    Google Scholar 

  19. Baracskai, I., Balázs, G., Liu, L., Ma, W., Oszvald, M., Newberry, M., Tömösközi, S., Láng, L., Bedö, Z., and Bekes, F., A retrospective analysis of HMW and LMW glutenin alleles of cultivars bred in Martonvásár, Hungary, Cer. Res. Commun., 2011, vol. 39, pp. 225–236. https://doi.org/10.1556/CRC.39.2011.2.6

    Article  CAS  Google Scholar 

  20. Marchylo, B.A., Lukow, O.M., and Kruger, J.E., Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheats, J. Cereal. Sci., 1992, vol. 15, pp. 29–37. https://doi.org/10.1016/s0733-5210(09)80054-4

    Article  CAS  Google Scholar 

  21. Metakovsky, E.V., Gliadin allele identification in common wheat. II Catalogue of gliadin alleles in common wheat, J. Genet. Breed., 1991, vol. 45, pp. 325–344.

    Google Scholar 

  22. Sobko, T.A. and Poperelya, F.A. The frequency of alleles of gliadin-coding loci in different cultivars of winter common wheat, Visn. Silskohospodar. Nauki, 1986, no. 5, pp. 84–87.

  23. Pritchard, J.R., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, no. 2, pp. 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Evanno, G., Regnaut, S., and Goudet, J., Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol., 2005, vol. 14, no. 8, pp. 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  25. Earl, D.A. and vonHoldt, B.M., STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Genet. Res., 2012, vol. 4, no. 2, pp. 359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  26. Peakall, R. and Smouse, P.E., GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol. Not., 2006, vol. 6, pp. 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

  27. Peakall, R. and Smouse, P.E., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update, Bioinformatics, 2012, vol. 28, pp. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, pp. 1547–1549.

    Article  CAS  Google Scholar 

  29. Clark-Carter, D., Doing Quantitative Psychological Research: From Design to Report, Psychology Press, 1997.

    Google Scholar 

  30. Poperelya, F.O. and Blagodarova, O.M., Genetics of grain quality of first Ukrainian genotypes of superstrong wheat, Cytol. Genet., 1998, vol. 32, no. 6, pp. 11–19.

    Google Scholar 

  31. Nevo, E. and Payne, P.I., Wheat storage proteins: diversity of HMW glutenin subunits in wild emmer from Israel. 1. Geographical patterns and ecological predictability, Theor. Appl. Genet., 1987, vol. 74, pp. 827–836.

    Article  CAS  Google Scholar 

  32. Metakovsky, E.V., Pogna, N.E., Biancardi, A.M., and Redaelli, R., Gliadin composition of common wheat cultivars grown in Italy, J. Genet. Breed., 1994, vol. 48, pp. 55–66.

    Google Scholar 

  33. Chernakov, V.M. and Metakovsky, E.V. Diversity of gliadin-coding locus allelic variants and evaluation of genetic similarity of common wheat varieties from different breeding centers, Genetika, 1994, vol. 30, pp. 509–17.

    Google Scholar 

  34. Metakovsky, E.V. and Branlard, G., Genetic diversity of French common wheat germplasm based on gliadin alleles, Theor. Appl. Genet., 1998, vol. 96, pp. 209–218.

    Article  CAS  Google Scholar 

  35. Sobko, T.A. and Sozinov, A.A., Analysis of genotype structure of common wheat cultivars licensed for growing in Ukraine using genetic markers, Cytol. Genet., 1999, vol. 33, pp. 30–41.

    Google Scholar 

  36. Metakovsky, E.V., Gomes, M., Vasquez, J.F., and Carrillo, J.M., High genetic diversity of Spanish common wheats as judged from gliadin alleles, Plant Breed., 2000, vol. 119, pp. 37–42.

    Article  CAS  Google Scholar 

  37. Wrigley, C.W., Békés, F., Cavagh, C.R., and Bushuk, W., The Gluten Composition of Wheat Varieties and Genotypes, 2006. http://www.aaccnet.org/initiatives/definitions/Pages/ gliadin.aspx.

  38. Blagodarova, O.M., Lytvynenko, M.A., and Golub, Ye.A., Gene geography of alleles at gliadin- and glutenin-coding loci of Ukrainian winter common wheat varieties and their association with agronomical traits, Collect. Sci. Paper.Inst. Breed. Genet., 2004, vol. 46, no. 6, pp. 124–138.

    Google Scholar 

  39. Novosel’skaya-Dragovich, A.Y., Krupnov, V.A., Saifulin, R.A., and Pukhalskiy, V.A, Dynamics of genetic variation at gliadin-coding loci in Saratov cultivars of common wheat Triticum aestivum L. over eight decades of scientific breeding, Genetika, 2003, vol. 39, pp. 1347–1352.

    Google Scholar 

  40. Roussel, V., Koenig, J., Beckert, M., and Balfourier, F., Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes, Theor. Appl. Genet., 2004, vol. 108, pp. 920–930. https://doi.org/10.1007/s00122-003-1502-y

    Article  CAS  PubMed  Google Scholar 

  41. Orabi, J., Jahoor, A., and Backes, G., Changes in allelic frequency over time in European bread wheat (Triticum aestivum L.) varieties revealed using DArT and SSR markers, Euphytica, 2014, vol. 197, pp. 447–462. https://doi.org/10.1007/s10681-014-1080-x

    Article  CAS  Google Scholar 

  42. Laido, G., Mangini, G., Taranto, F., Gadaleta, A., Blanco A., Cattivelli, L., Marone, D., Mastrangelo, A.M., Papa, R., and De Vita, P. Genetic diversity and population structure of tetraploid wheats (Triticum turgidum L.) estimated by SSR, DArT and pedigree data, PLoS One, 2013, vol. 8, no. 6, e67280. https://doi.org/10.1371/journal.pone.0067280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Balfourier, F., Bouchet, S., Robert, S., De Oliveira, R., Rimbert, H., Kitt, J., and Choulet, F., International Wheat Genome Sequencing Consortium, Breed Wheat Consortium, Paux E., Worldwide phylogeography and history of wheat genetic diversity, Sci. Adv., 2019, vol. 5, no. 5, eaav0536. https://doi.org/10.1126/sciadv.aav0536

  44. Zhang, L., Liu, D., Guo, X., Yang, W., Sun, J., Wang, D., Sourdille, P., and Zhang, A., Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers, BMC Genet., 2011, vol. 12, p. 42. http://www.biomed-central.com/1471-2156/12/42https://doi.org/10.1186/1471-2156-12-42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lopes, M.S, Dreisigacker, S., Peca, R.J., Sukumaran, S., and Reynolds, M.P., Genetic characterization of the wheat association mapping initiative (WAMI) panel for dissection of complex traits in spring wheat, Theor. Appl. Genet., 2015, vol. 128, pp. 453–464. https://doi.org/10.1007/s00122-014-2444-2

    Article  CAS  PubMed  Google Scholar 

  46. Chen, T., Tantasawat, P.A., Wang, W., Gao, X., and Zhang, L., Population structure of Chinese south west wheat germplasms resistant to stripe rust and powdery mildew using the DArT-seq technique, Ciencia Rural, Santa Maria, 2018, vol. 48, no. 4, e20 160 066. https://doi.org/10.1590/0103-8478cr20160066

    Article  Google Scholar 

  47. Nielsen, N.H., Backes, G., Stougaard, J., Andersen, S.U., and Jahoor, A., Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties, PLoS One, 2014, vol. 9, no. 4, e94 000. https://doi.org/10.1371/journal.pone.0094000

    Article  CAS  Google Scholar 

  48. Maccaferri, M., Harris, N.S., Twardziok, S.O., et al., Durum wheat genome highlights past domestication signatures and future improvement targets, Nat. Genet., 2019, vol. 51, pp. 885–895. https://doi.org/10.1038/s41588-019-0381-3

    Article  CAS  PubMed  Google Scholar 

  49. Boychenko, S., Voloshchuk, V., Movchan, Ya., Ser-djuchenko, N, Tkachenko, V., Tyshchenko, O., and Savchenko, S., Features of climate change on Ukraine: scenarios, consequences for nature and agro-ecosystems, Proc. Natl. Aviat. Univ., 2016, vol. 69, no. 4, pp. 96–113. https://doi.org/10.18372/2306-1472.69.11061

    Article  Google Scholar 

  50. Jones, P.D., Lister, D.H., Osborn, T.J., Harpham, C., Salmon, M., and Morice, C.P., Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010, J. Geoph. Res., 2012, vol. 117, D05127. doi 10.10292011JD017139

  51. Diab, A., Kantety, R.V., Ozturk N.Z., Benscher, D., Nachit, M.V., and Sorrells, M.E., Drought-inducible genes and differentially expressed sequence tags associated with components of drought tolerance in durum wheat, Sci. Res. Essay, 2008, vol. 3, pp. 9–26.

    Google Scholar 

  52. Xu, Y., Li, S., Li, L. Ma, F., Fu, X., Shi, Z., Xu, H., Ma, P., and An, D., QTL mapping for yield and photosynthetic related traits under different water regimes in wheat, Mol. Breed., 2017, vol. 37, e34. https://doi.org/10.1007/s11032-016-0583-7

    Article  CAS  Google Scholar 

  53. El-Feki, W., Byrne, P.F., Reid, S.D., and Haley, S.D., Mapping quantitative trait loci for agronomic traits in winter wheat under different soil moisture levels, Agronomy, 2018, vol. 8, e133. https://doi.org/10.3390/agronomy8080133

    Article  CAS  Google Scholar 

  54. Ovenden, B., Milgate, A., Wade, L.J., Rebetzke, G.J., and Holland, J.B., Genome-wide associations for water-soluble carbohydrate concentration and relative maturity in wheat using SNP and DArT marker arrays, G3: Genes, Genomes,Genet., 2017, vol. 7, pp. 2821–2830. https://doi.org/10.1534/g3.117.039842

    Article  CAS  Google Scholar 

  55. Soriano, J.M. and Alvaro, F., Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis, Sci. Rep., 2019, vol. 9, e10 537.https://doi.org/10.1038/s41598-019-47038-2

    Article  CAS  Google Scholar 

  56. Joukhadar, R., Daetwyler, H.D., Bansal, U.K., Gendall, A.R., and Hayden, M.J., Genetic diversity, population structure and ancestral origin of Australian wheat, Front. Plant Sci., 2017, vol. 8, e2115. https://doi.org/10.3389/fpls.2017.02115

    Article  Google Scholar 

  57. Nevo, E., Fu, Y., Pavlicek, T., Khalifa, S., Tavasi, M., and Avigdor, A., Evolution of wild cereals during 28 years of global warming in Israel, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 9, pp. 3412–3415. https://doi.org/10.1073/pnas.1121411109

    Article  PubMed  PubMed Central  Google Scholar 

  58. Qian, C., Yan, X., Shi, Y. Yin, H., Chang, Y., Chen, J., Ingvarsson, P.K., Nevo, E., and Ma, X., Adaptive signals of flowering time pathways in wild barley from Israel over 28 generations, Heredity, 2020, vol. 124, pp. 62–76. https://doi.org/10.1038/s41437-019-0264-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was not funded by a specific project grant from state, commercial or nonprofit funding institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. O. Kozub.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozub, N.O., Sozinov, I.O., Chaika, V.M. et al. Changes in Allele Frequencies at Storage Protein Loci of Winter Common Wheat under Climate Change. Cytol. Genet. 54, 305–317 (2020). https://doi.org/10.3103/S0095452720040076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720040076

Keywords:

Navigation