Skip to main content
Log in

Development of an Effective In Vitro Regeneration System for Ukrainian Breeding Winter Rape Brassica napus L.

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

An optimized regeneration method for commercial winter rape of the Bn1 line was proposed. Hypocotyl fragments of 6-day-old seedlings were used as explants. Regeneration occurred via organogenesis on an MS medium supplemented with 3 mg/L of 6-benzylaminopurine and 2 mg/L of 2-isopentyladenine. All obtained regenerated plants successfully formed roots on hormone-free media and were adapted to the soil conditions. The vernalization conditions were specified to promote budding and flowering at the level of 83.93 ± 5.33%. The PCR analysis using the ISSR 2 and ISSR 15 markers has shown that no somaclonal variations in Bn1 winter rape occur under the protocols based on the proposed methodology. Thus, the developed methodology is efficient and economically profitable for obtaining biotechnology-based winter rape plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Maheshwari, P., Selvaraj, G., and Kovalchuk, I., Optimization of Brassica napus (canola) explant regeneration for genetic transformation, New Biotechnol., 2011, vol. 29, no 1, pp. 144–155. https://doi.org/10.1016/j.nbt.2011.06.014

    Article  CAS  Google Scholar 

  2. Hoang, T.G. and Raldugina, G.N., Regeneration of transgenic plants expressing the GFP gene from rape cotyledonary and leaf explants: effects of the genotype and ABA, Russ. J. Plant Physiol., 2012, vol. 59, no. 3, pp. 406–412. https://doi.org/10.1134/S1021443712030089

    Article  CAS  Google Scholar 

  3. Hussain, S., Rasheed, A., Latif, M., Mahmood, T., and Saqlan Naqvi, S.M., Canola (Brassica napus L.) regeneration and transformation via hypocotyl and hypocotyl derived calli, Sarhad J. Agric., 2014, vol. 30, no. 2, pp. 165–172.

    Google Scholar 

  4. Bhalla, P.L. and Singh, M.B., Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea,Nat. Prot., 2008, vol. 3, no. 2, pp. 181–189. https://doi.org/10.1038/nprot.2007.527

    Article  CAS  Google Scholar 

  5. Mashayekhi, M., Shakib, A.M., Ahmad-Raji, M., and Ghasemi Bezdi, K., Gene transformation potential of commercial canola (Brassica napus L.) cultivars using cotyledon and hypocotyl explants, Afr. J. Biotechnol., 2008, vol. 7, no. 24, pp. 4459–4463.

    CAS  Google Scholar 

  6. Rahnama, H. and Sheykhhasan, M., Transformation and light inducible expression of cry1Ab gene in oilseed rape (Brassica napus L.), J. Sci., 2016, vol. 27, no. 4, pp. 313–319.

    Google Scholar 

  7. Bates, R., Craze, M., and Wallington, E.J., Agrobacterium-mediated transformation of oilseed rape (Brassica napus), Curr. Prot. Plant Biol., 2017, vol. 2, pp. 287–298. https://doi.org/10.1002/cppb.20060

    Article  Google Scholar 

  8. Ikeuchi, M., Ogawa, Y., Iwase, A., and Sugimoto, K., Plant regeneration: cellular origins and molecular mechanisms, Development, 2016, vol. 143, no. 9, pp. 1442–1451. https://doi.org/10.1242/dev.134668

    Article  CAS  PubMed  Google Scholar 

  9. Lone, J.A., Gupta, S.K., Wani, S.H., Bhat, M.A., and Lone, R.A., In vitro regeneration studies in Brassica napus with response to callus induction frequency and regeneration frequency, Int. J. Agric., Environ. Biotechnol., 2016, vol. 9, no. 5, pp. 755–761. https://doi.org/10.5958/2230-732X.2016.00098.X

    Article  Google Scholar 

  10. Akter, S., Mollika, S.R., Sarker, R.H., and Hoque, M.I., Agrobacterium-mediated genetic transformation of two varieties of Brassica juncea (L.) using marker genes, Plant Tiss. Cult. Biotechnol., 2016, vol. 26, no. 1, pp. 55–65. https://doi.org/10.3329/bjar.v34i2.5802

    Article  Google Scholar 

  11. Liu, X.X., Lang, S.R., Su, L.Q., Liu, X., and Wang, X.F., Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus “Precocity” cultivar, Genet. Mol. Res., 2015, vol. 14, no. 4, pp. 16 840–16 855. https://doi.org/10.4238/2015

    Article  Google Scholar 

  12. Hocheva, E.A., Sakhno, L.O., and Kuchuk, M.V., Method for producing transformed rape plants by method of agrobacterial transformation, UA Patent no. u200811768 model 39 205, 2009, Bull. 3.

  13. Ravanfar, S.A., Orbovic, V., Moradpour, M., Abdul Aziz, M., Karan, R., Wallace, S., and Parajuli, S., Improvement of tissue culture, genetic transformation, and applications of biotechnology to Brassica,Biotechnol. Genet. Eng. Rev., 2017, vol. 33, no. 1, pp. 1–25. https://doi.org/10.1080/02648725.2017.1309821

    Article  CAS  PubMed  Google Scholar 

  14. Bairu, M.W., Aremu, A.O, and Staden, J., Somaclonal variation in plants: causes and detection methods, Plant Growth Regul., 2010, vol. 63, no. 2, pp. 147–173. https://doi.org/10.1007/s10725-010-9554-x

    Article  CAS  Google Scholar 

  15. Reddy, M.P., Sarla, N., and Siddiq, E.A., Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding, Euphytica, 2002, vol. 128, pp. 9–17. https://doi.org/10.1023/A:1020691618797

    Article  Google Scholar 

  16. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  17. Rogers, S.O. and Bendich, A.J., Extraction of total cellular DNA from plants, algae and fungi, Plant Mol. Biol. Man., 1994, pp. 183–190. https://doi.org/10.1007/978-94-011-0511-8_12

  18. Godwin, I., Aitken, E., and Smith, L., Application of inter simple sequence repeat (ISSR) markers to plant genetics, Electrophoresis, 1997, vol. 18, no. 9, pp. 1524–1528. https://doi.org/10.1002/elps.1150180906

    Article  CAS  PubMed  Google Scholar 

  19. Mahjooba, B., Zarinib, H.N., Hashemia, S.H., and Shamasbia, F.V., Comparison of ISSR, IRAP and REMAP markers for assessing genetic diversity in different species of Brassica sp., Russ. J. Genet., 2016, vol. 52, no. 12, pp. 1272–81. https://doi.org/10.1134/s1022795416120073

    Article  Google Scholar 

  20. Debergh, P.C. and Zimmerman, R.H., Micropropagation: Technology and Application, Dordrecht: Kluwer Academic, 1991.

    Book  Google Scholar 

  21. Savelieva, E.M. and Tarakanov, I.G., Control of flowering in canola plants with various response to photoperiodic and low-temperature induction, Izv. Timiryaz. Agricult. Acad., 2014, vol. 2, pp. 57–68.

    Google Scholar 

  22. Filek, M., Koscielniak, J., Macháčková, I., and Krekule, J., Generative development of winter rape (Brassica napus L.)—the role of vernalization, Int. J. Plant Dev. Biol., 2007, vol. 1, no. 1, pp. 57–63.

    Google Scholar 

  23. Waalen, W.M., Stavang, J.A., Olsen, J.E., and Rognli, O.A., The relationship between vernalization saturation and the maintenance of freezing tolerance in winter rapeseed, Environ. Exp. Bot., 2014, vol. 106, pp. 164–173. https://doi.org/10.1016/j.envexpbot.2014.02.012

    Article  Google Scholar 

  24. Sakhno, L.A., Gocheva, E.A., Komarnitskii, I.K., and Kuchuk, N.V., Stable expression of the promoterless bar gene in transformed rapeseed plants, Cytol. Genet., 2008, vol. 42, no. 1, pp. 21–28.https://doi.org/10.1007/s11956-008-1003-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Hnatyuk.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by N. Tarasyuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hnatyuk, I.S., Varchenko, O.I., Kuchuk, M.V. et al. Development of an Effective In Vitro Regeneration System for Ukrainian Breeding Winter Rape Brassica napus L.. Cytol. Genet. 54, 341–346 (2020). https://doi.org/10.3103/S0095452720040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452720040039

Keywords:

Navigation