Skip to main content
Log in

Atmospheric Volatile Organic Compounds (VOCs) in China: a Review

  • Air Pollution (H Zhang and Y Sun, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to summarize the current understandings of atmospheric VOC characteristics in China and put forward the methodological drawbacks of the VOC measurement that need to be resolved and the research gaps that need to be filled.

Recent Findings

Whereas in recent investigations in the North China Plain (NCP) a reduction (20–66%) in total VOC concentration is noticed compared with the ones published before 2015, an increase (13–127%) is observed for the Yangtze River Delta (YRD) region. Aromatics and oxygenated VOCs are frequently appearing as the most abundant VOC group in recent investigations. Industry-related VOC sources are more dominant in the YRD regions while vehicle-related sources are more influential in the NCP, Central China, and Pearl River Delta regions. Benzene, 1,3,5-trimethylbenzene, ethylbenzene, naphthalene, dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, chloroform, carbon tetrachloride, and 1,2-dibromoethane pose carcinogenic risk to exposed population in China and the most risk-prone areas are affected by the petrochemical industry, biomass burning, waste management, and vehicle emissions. Formaldehyde and toluene have relatively high concentrations among the different indoor VOCs observed and their concentrations noticed to be exceeded the national air quality standard.

Summary

More investigations have to be performed on rarely studied health risk assessment of VOCs and characterization of indoor VOCs. BVOC studies are rarely conducted in China, which has to be performed on common plant species, different forest, and agricultural crops. VOC characterization in forest fire smokes and more process-specific emission characteristics in common industries need to be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. An J, Wang J, Zhang Y, Zhu B. Source apportionment of volatile organic compounds in an urban environment at the Yangtze River Delta, China. Arch Environ Contam Toxicol. 2017;72(3):335–48. https://doi.org/10.1007/s00244-017-0371-3.

    Article  CAS  Google Scholar 

  2. • Deng Y, Li J, Li Y, Wu R, Xie S. Characteristics of volatile organic compounds, NO2, and effects on ozone formation at a site with high ozone level in Chengdu. J Environ Sci (China). 2019;75(2):334–45. https://doi.org/10.1016/j.jes.2018.05.004This article characterizes atmospheric VOC during ozone and non-ozone episode in megacity Chengdu.

    Article  Google Scholar 

  3. •• He Z, Wang X, Ling Z, Zhao J, Guo H, Shao M, et al. Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in the Pearl River Delta region and its policy implications. Atmos Chem Phys. 2019;19(13):8801–16. https://doi.org/10.5194/acp-19-8801-2019This article reports VOC characteristics, their sources, and sensitivity to ozone formation in the PRD region.

    Article  CAS  Google Scholar 

  4. •• Hui L, Liu X, Tan Q, Feng M, An J, Qu Y, et al. VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China. Sci Total Environ. 2019;650:2624–39. https://doi.org/10.1016/j.scitotenv.2018.10.029This article presents VOC characteristics, sources, and contributions to SOA formation during different haze conditions in Wuhan.

    Article  CAS  Google Scholar 

  5. Jia C, Mao X, Huang T, Liang X, Wang Y, Shen Y, et al. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China. Atmos Res. 2016;169:225–36. https://doi.org/10.1016/j.atmosres.2015.10.006.

    Article  CAS  Google Scholar 

  6. Liu B, Liang D, Yang J, Dai Q, Bi X, Feng Y, et al. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China. Environ Pollut. 2016a;218:757–69. https://doi.org/10.1016/j.envpol.2016.07.072.

    Article  CAS  Google Scholar 

  7. Meng HAN, Xueqiang LU, Chunsheng Z, Liang RAN, & Suqin HAN (2015) Characterization and Source Apportionment of Volatile Organic Compounds in Urban and Suburban Tianjin, China. Adv Atmos Sci, 32(3), 439–444. https://doi.org/10.1007/s00376-014-4077-4.1

  8. Song M, Tan Q, Feng M, Qu Y, Liu X. Source apportionment and secondary transformation of atmospheric nonmethane hydrocarbons in Chengdu, Southwest China. J Geophys Res Atmos. 2018;123(2):9741–63. https://doi.org/10.1029/2018JD028479.

    Article  CAS  Google Scholar 

  9. •• Sun J, Shen Z, Zhang Y, Zhang Z, Zhang Q, Zhang T, et al. Urban VOC profiles, possible sources, and its role in ozone formation for a summer campaign over Xi’an, China. Environ Sci Pollut Res. 2019a;26(27):27769–82. https://doi.org/10.1007/s11356-019-05950-0This paper documents different VOC concentrations, sources, and ozone formation potential in Xi’an.

    Article  CAS  Google Scholar 

  10. Sun J, Wang J, Shen Z, Huang Y, Zhang Y, Niu X, et al. Volatile organic compounds from residential solid fuel burning in Guanzhong Plain, China: source-related profiles and risks. Chemosphere. 2019b;221:184–92. https://doi.org/10.1016/j.chemosphere.2019.01.002.

    Article  CAS  Google Scholar 

  11. Zeng P, Lyu XP, Guo H, Cheng HR, Jiang F, Pan WZ, et al. Causes of ozone pollution in summer in Wuhan, Central China. Environ Pollut. 2018;241(x):852–61. https://doi.org/10.1016/j.envpol.2018.05.042.

    Article  CAS  Google Scholar 

  12. Zhang Y, Li R, Fu H, Zhou D, Chen J. Observation and analysis of atmospheric volatile organic compounds in a typical petrochemical area in Yangtze River. J Environ Sci. 2018a;71:233–48. https://doi.org/10.1016/j.jes.2018.05.027.

    Article  Google Scholar 

  13. • Zhang Z, Yan X, Gao F, Thai P, Wang H, Chen D, et al. Emission and health risk assessment of volatile organic compounds in various processes of a petroleum refinery in the Pearl River Delta. Environ Pollut. 2018b;238:452–61. https://doi.org/10.1016/j.envpol.2018.03.054This paper reports process-specific VOC emissions in a petroleum industry and their associated health risks.

    Article  CAS  Google Scholar 

  14. Feng T, Bei N, Huang RJ, Cao J, Zhang Q, Zhou W, et al. Summertime ozone formation in Xi’an and surrounding areas, China. Atmos Chem Phys. 2016;16(7):4323–42. https://doi.org/10.5194/acp-16-4323-2016.

    Article  CAS  Google Scholar 

  15. Tan Z, Lu K, Dong H, Hu M, Li X, Liu Y, et al. Explicit diagnosis of the local ozone production rate and the ozone-NOx-VOC sensitivities. Sci Bull. 2018b;63(16):1067–76. https://doi.org/10.1016/j.scib.2018.07.001.

    Article  CAS  Google Scholar 

  16. • Tan Z, Lu K, Jiang M, Su R, Dong H, Zeng L, et al. Exploring ozone pollution in Chengdu, southwestern China: a case study from radical chemistry to O3 -VOC-NOx sensitivity. Sci Total Environ. 2018a;636:775–86. https://doi.org/10.1016/j.scitotenv.2018.04.286This paper discusses ozone-NOx-VOC sensitivity in an urban area.

    Article  CAS  Google Scholar 

  17. •• Sheng J, Zhao D, Ding D, Li X, Huang M, Gao Y, et al. Characterizing the level, photochemical reactivity, emission, and source contribution of the volatile organic compounds based on PTR-TOF-MS during winter haze period in Beijing, China. Atmos Res. 2018;212(December 2017):54–63. https://doi.org/10.1016/j.atmosres.2018.05.005This article presents PTR-TOF-MS measured VOC concentrations in Beijing during a haze event and their reactivity and sources. It reports methanol, formaldehyde, and acetaldehyde as the highest concentrated VOCs.

    Article  CAS  Google Scholar 

  18. Li K, Jacob DJ, Liao H, Shen L, Zhang Q, Bates KH. Anthropogenic drivers of 2013–2017 trends in summer surface ozone in China. Proc Natl Acad Sci U S A. 2019;116(2):422–7. https://doi.org/10.1073/pnas.1812168116.

    Article  CAS  Google Scholar 

  19. •• Liu S, Xing J, Zhang H, Ding D, Zhang F, Zhao B, et al. Climate-driven trends of biogenic volatile organic compound emissions and their impacts on summertime ozone and secondary organic aerosol in China in the 2050s. Atmos Environ. 2019;218(July):117020. https://doi.org/10.1016/j.atmosenv.2019.117020This article reports a modeling study of BVOC emissions in China and their effects on ozone and SOA formation.

    Article  CAS  Google Scholar 

  20. Mo Z, Shao M, Lu S, Qu H, Zhou M, Sun J, et al. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China. Sci Total Environ. 2015;533:422–31. https://doi.org/10.1016/j.scitotenv.2015.06.089.

    Article  CAS  Google Scholar 

  21. Zhang G, Wang N, Jiang X, Zhao Y. Characterization of ambient volatile organic compounds (VOCs) in the area adjacent to a petroleum refinery in Jinan, China. Aerosol Air Qual Res. 2017a;17(4):944–50. https://doi.org/10.4209/aaqr.2016.07.0303.

    Article  CAS  Google Scholar 

  22. Zhang H, Li H, Zhang Q, Zhang Y, Zhang W, Wang X, et al. Atmospheric volatile organic compounds in a typical urban area of Beijing: pollution characterization, health risk assessment and source apportionment. Atmosphere. 2017b;8(3). https://doi.org/10.3390/atmos8030061.

  23. Zhang Z, Wang X, Zhang Y, Lü S, Huang Z, Huang X, et al. Ambient air benzene at background sites in China’s most developed coastal regions: exposure levels, source implications and health risks. Sci Total Environ. 2015;511:792–800. https://doi.org/10.1016/j.scitotenv.2015.01.003.

    Article  CAS  Google Scholar 

  24. Li J, Xie SD, Zeng LM, Li LY, Li YQ, Wu RR. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014. Atmos Chem Phys. 2015a;15(14):7945–59. https://doi.org/10.5194/acp-15-7945-2015.

    Article  CAS  Google Scholar 

  25. Mo Z, Shao M, Lu S, Niu H, Zhou M, Sun J. Characterization of non-methane hydrocarbons and their sources in an industrialized coastal city, Yangtze River Delta, China. Sci Total Environ. 2017;593–594:641–53. https://doi.org/10.1016/j.scitotenv.2017.03.123.

    Article  CAS  Google Scholar 

  26. •• Song M, Liu X, Zhang Y, Shao M, Lu K, Tan Q, et al. Sources and abatement mechanisms of VOCs in southern China. Atmos Environ. 2019;201(December 2018):28–40. https://doi.org/10.1016/j.atmosenv.2018.12.019This paper discusses VOC characteristic, sources, reactivity, and emission reduction measures in Heshan.

    Article  CAS  Google Scholar 

  27. Zhu Y, Yang L, Chen J, Wang X, Xue L, Sui X, et al. Characteristics of ambient volatile organic compounds and the influence of biomass burning at a rural site in Northern China during summer 2013. Atmos Environ. 2016;124:156–65. https://doi.org/10.1016/j.atmosenv.2015.08.097.

    Article  CAS  Google Scholar 

  28. Zou Y, Deng XJ, Zhu D, Gong DC, Wang H, Li F, et al. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China. Atmos Chem Phys. 2015;15(12):6625–36. https://doi.org/10.5194/acp-15-6625-2015.

    Article  CAS  Google Scholar 

  29. •• Hui L, Liu X, Tan Q, Feng M, An J, Qu Y, et al. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China. Atmos Environ. 2018;192(2):55–71. https://doi.org/10.1016/j.atmosenv.2018.08.042This paper reports VOC characteristics, sources, reactivity, and contribution to ozone formation in Wuhan over four seasons.

    Article  CAS  Google Scholar 

  30. Wang G, Cheng S, Wei W, Zhou Y, Yao S, Zhang H. Characteristics and source apportionment of VOCs in the suburban area of Beijing, China. Atmos Pollut Res. 2016a;7(4):711–24. https://doi.org/10.1016/j.apr.2016.03.006.

    Article  Google Scholar 

  31. Wang N, Li N, Liu Z, Evans E. Investigation of chemical reactivity and active components of ambient VOCs in Jinan, China. Air Qual Atmos Health. 2016b;9(7):785–93. https://doi.org/10.1007/s11869-015-0380-1.

    Article  CAS  Google Scholar 

  32. Li J, Zhai C, Yu J, Liu R, Li Y, Zeng L, et al. Spatiotemporal variations of ambient volatile organic compounds and their sources in Chongqing, a mountainous megacity in China. Sci Total Environ. 2018;627:1442–52. https://doi.org/10.1016/j.scitotenv.2018.02.010.

    Article  CAS  Google Scholar 

  33. Wang J, Zhang C, Zhou J. Determination and characteristic analysis of atmospheric non-methane hydrocarbons in a regional Hub City of North China Plain. Earth Environ Sci. 2019;01:2052. https://doi.org/10.1088/1755-1315/223/1/012052.

    Article  Google Scholar 

  34. Bai J, Duhl T, Hao N. Biogenic volatile compound emissions from a temperate forest, China: model simulation. J Atmos Chem. 2016a;73:29–59. https://doi.org/10.1007/s10874-015-9315-3.

    Article  CAS  Google Scholar 

  35. Bai J, Guenther A, Turnipseed A, Duhl T. Seasonal and interannual variations in whole–ecosystem isoprene and monoterpene emissions from a temperate mixed forest in Northern China. Atmos Pollut Res. 2015;6(4):696–707. https://doi.org/10.5094/APR.2015.078.

    Article  CAS  Google Scholar 

  36. • Bai J, Guenther A, Turnipseed A, Duhl T, Greenberg J. Seasonal and interannual variations in whole-ecosystem BVOC emissions from a subtropical plantation in China. Atmos Environ. 2017;161:176–90. https://doi.org/10.1016/j.atmosenv.2017.05.002This article reports ecosystem-level BVOC emissions from the forest.

    Article  CAS  Google Scholar 

  37. Bai J, Guenther A, Turnipseed A, Duhl T, Yu S, Wang B. Seasonal variations in whole-ecosystem BVOC emissions from a subtropical bamboo plantation in China. Atmos Environ. 2016b;124:12–21. https://doi.org/10.1016/j.atmosenv.2015.11.008.

    Article  CAS  Google Scholar 

  38. Ghirardo A, Xie J, Zheng X, Wang Y, Grote R, Block K, et al. Urban stress-induced biogenic VOC emissions and SOA-forming potentials in Beijing. Atmos Chem Phys. 2016;16:2901–20. https://doi.org/10.5194/acp-16-2901-2016.

    Article  CAS  Google Scholar 

  39. Chang T, Ren D, Shen Z, Huang Y, Sun J, Cao J, et al. Indoor air pollution levels in decorated residences and public places over Xi’an, China. Aerosol Air Qual Res. 2017;17(9):2197–205. https://doi.org/10.4209/aaqr.2016.12.0542.

    Article  CAS  Google Scholar 

  40. Chen X, Li F, Liu C, Yang J, Zhang J, Peng C. Monitoring, human health risk assessment and optimized management for typical pollutants in indoor air from random families of university staff, Wuhan City, China. Sustainability (Switzerland). 2017;9(7):1–13. https://doi.org/10.3390/su9071115.

    Article  CAS  Google Scholar 

  41. Cheng Z, Li B, Yu W, Wang H, Zhang T, Xiong J, et al. Risk assessment of inhalation exposure to VOCs in dwellings in Chongqing, China. Toxicol Res. 2018;7(1):59–72. https://doi.org/10.1039/c7tx00191f.

    Article  CAS  Google Scholar 

  42. • Dai H, Jing S, Wang H, Ma Y, Li L, Song W, et al. VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci Total Environ. 2017;577:73–83. https://doi.org/10.1016/j.scitotenv.2016.10.071This paper presents indoor VOC characteristics and their health risk.

    Article  CAS  Google Scholar 

  43. Duan H, Liu X, Yan M, Wu Y, Liu Z. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China. Front Environ Sci Eng. 2016;10(1):73–84. https://doi.org/10.1007/s11783-014-0743-0.

    Article  CAS  Google Scholar 

  44. Huang K, Song J, Feng G, Chang Q, Jiang B, Wang J, et al. Indoor air quality analysis of residential buildings in Northeast China based on field measurements and longtime monitoring. Build Environ. 2018;144(August):171–83. https://doi.org/10.1016/j.buildenv.2018.08.022.

    Article  Google Scholar 

  45. Mustafa MF, Liu Y, Duan Z, Guo H, Xu S, Wang H, et al. Volatile compounds emission and health risk assessment during composting of organic fraction of municipal solid waste. J Hazard Mater. 2017;327:35–43. https://doi.org/10.1016/j.jhazmat.2016.11.046.

    Article  CAS  Google Scholar 

  46. Nie E, Zheng G, Shao Z, Yang J, Chen T. Emission characteristics and health risk assessment of volatile organic compounds produced during municipal solid waste composting. Waste Manag. 2018;79:188–95. https://doi.org/10.1016/j.wasman.2018.07.024.

    Article  CAS  Google Scholar 

  47. Wu C, Liu J, Liu S, Li W, Yan L, Shu M, et al. Assessment of the health risks and odor concentration of volatile compounds from a municipal solid waste landfill in China. Chemosphere. 2018;202:1–8. https://doi.org/10.1016/j.chemosphere.2018.03.068.

    Article  CAS  Google Scholar 

  48. Guo H, Ling ZH, Cheng HR, Simpson IJ, Lyu XP, Wang XM, et al. Tropospheric volatile organic compounds in China. Sci Total Environ. 2017;574:1021–43. https://doi.org/10.1016/j.scitotenv.2016.09.116.

    Article  CAS  Google Scholar 

  49. Liu Z, Li N, Wang N. Characterization and source identification of ambient VOCs in Jinan, China. Air Qual Atmos Health. 2016b;9(3):285–91. https://doi.org/10.1007/s11869-015-0339-2.

    Article  CAS  Google Scholar 

  50. Lyu XP, Chen N, Guo H, Zhang WH, Wang N, Wang Y, et al. Ambient volatile organic compounds and their effect on ozone production in Wuhan, Central China. Sci Total Environ. 2016;541:200–9. https://doi.org/10.1016/j.scitotenv.2015.09.093.

    Article  CAS  Google Scholar 

  51. Li L, Xie S, Zeng L, Wu R, Li J. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region, China. Atmos Environ. 2015b;113:247–54. https://doi.org/10.1016/j.atmosenv.2015.05.021.

    Article  CAS  Google Scholar 

  52. Shao P, An J, Xin J, Wu F, Wang J, Ji D, et al. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China. Atmos Res. 2016;176–177:64–74. https://doi.org/10.1016/j.atmosres.2016.02.015.

    Article  CAS  Google Scholar 

  53. Zhu H, Wang H, Jing S, Wang Y, Cheng T, Tao S, et al. Characteristics and sources of atmospheric volatile organic compounds (VOCs) along the mid-lower Yangtze River in China. Atmos Environ. 2018;190(7):232–40. https://doi.org/10.1016/j.atmosenv.2018.07.026.

    Article  CAS  Google Scholar 

  54. Wu R, Li J, Hao Y, Li Y, Zeng L, Xie S. Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing, China. Sci Total Environ. 2016b;560–561:62–72. https://doi.org/10.1016/j.scitotenv.2016.04.030.

    Article  CAS  Google Scholar 

  55. Li K, Chen L, Ying F, White SJ, Jang C, Wu X, et al. Meteorological and chemical impacts on ozone formation: a case study in Hangzhou, China. Atmos Res. 2017;196(February):40–52. https://doi.org/10.1016/j.atmosres.2017.06.003.

    Article  CAS  Google Scholar 

  56. von Schneidemesser E, Monks PS, Plass-Duelmer C. Global comparison of VOC and CO observations in urban areas. Atmos Environ. 2010;44(39):5053–64. https://doi.org/10.1016/j.atmosenv.2010.09.010.

    Article  CAS  Google Scholar 

  57. Warneke C, De Gouw JA, Holloway JS, Peischl J, Ryerson TB, Atlas E, et al. Multiyear trends in volatile organic compounds in Los Angeles, California: five decades of decreasing emissions. J Geophys Res Atmos. 2012;117(17):1–10. https://doi.org/10.1029/2012JD017899.

    Article  CAS  Google Scholar 

  58. Hoshi J, Amano S, Sasaki Y, Korenaga T. Investigation and estimation of emission sources of 54 volatile organic compounds in ambient air in Tokyo. Atmos Environ. 2008;42(10):2383–93. https://doi.org/10.1016/j.atmosenv.2007.12.024.

    Article  CAS  Google Scholar 

  59. Sun J, Wu F, Hu B, Tang G, Zhang J, Wang Y. VOC characteristics, emissions and contributions to SOA formation during hazy episodes. Atmos Environ. 2016;141:560–70. https://doi.org/10.1016/j.atmosenv.2016.06.060.

    Article  CAS  Google Scholar 

  60. Wang H, Xiang Z, Wang L, Jing S, Lou S, Tao S, et al. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. Science of the Total Environment. 2018;621:1300–1309. https://doi.org/10.1016/j.scitotenv.2017.10.098

  61. Wu W, Zhao B, Wang S, & Hao J. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China. Journal of Environmental Sciences. 2017;53:224–237. https://doi.org/10.1016/j.jes.2016.03.025

  62. •• Wei W, Li Y, Wang Y, Cheng S, Wang L. Characteristics of VOCs during haze and non-haze days in Beijing, China: Concentration, chemical degradation and regional transport impact. Atmos Environ. 2018;194(March):134–45. https://doi.org/10.1016/j.atmosenv.2018.09.037This article presents VOC characteristics during haze and non-haze days in a megacity.

    Article  CAS  Google Scholar 

  63. Wu F, Yu Y, Sun J, Zhang J, Wang J, Tang G, et al. Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China. Sci Total Environ. 2016c;548–549:347–59. https://doi.org/10.1016/j.scitotenv.2015.11.069.

    Article  CAS  Google Scholar 

  64. Wu R, Bo Y, Li J, Li L, Li Y, Xie S. Method to establish the emission inventory of anthropogenic volatile organic compounds in China and its application in the period 2008-2012. Atmos Environ. 2016a;127:244–54. https://doi.org/10.1016/j.atmosenv.2015.12.015.

    Article  CAS  Google Scholar 

  65. Cao H, Fu T, Zhang L, Henze DK, Miller CC, Lerot C, et al. Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal. Atmospheric Chemistry and Physics. 2018;18:15017–15046.

  66. Sun W, Shao M, Granier C, Liu Y, Ye CS, Zheng JY. Long-term trends of anthropogenic SO2, NOx, CO, and NMVOCs emissions in China. Earth’s Future. 2018a;6:1112–33. https://doi.org/10.1029/2018EF000822.

    Article  CAS  Google Scholar 

  67. Sun J, Wang Y, Wu F, Tang G, Wang L, Wang Y, et al. Vertical characteristics of VOCs in the lower troposphere over the North China Plain during pollution periods. Environ Pollut. 2018b;236:907–15. https://doi.org/10.1016/j.envpol.2017.10.051.

    Article  CAS  Google Scholar 

  68. Li J, Wu R, Li Y, Hao Y, Xie S, Zeng L. Effects of rigorous emission controls on reducing ambient volatile organic compounds in Beijing, China. Sci Total Environ. 2016;557–558:531–41. https://doi.org/10.1016/j.scitotenv.2016.03.140.

    Article  CAS  Google Scholar 

  69. Wang M, Shao M, Chen W, Lu S, Liu Y, Yuan B, et al. Trends of non-methane hydrocarbons (NMHC) emissions in Beijing during 2002–2013. Atmos Chem Phys. 2015;15:1489–502. https://doi.org/10.5194/acp-15-1489-2015.

    Article  CAS  Google Scholar 

  70. Yan Y, Peng L, Li R, Li Y, Li L, Bai H. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: a study in Shuozhou, China. Environ Pollut. 2017;223:295–304. https://doi.org/10.1016/j.envpol.2017.01.026.

    Article  CAS  Google Scholar 

  71. Mo Z, Shao M, Lu S. Compilation of a source profile database for hydrocarbon and OVOC emissions in China. Atmos Environ. 2016;143:209–17. https://doi.org/10.1016/j.atmosenv.2016.08.025.

    Article  CAS  Google Scholar 

  72. Ni Z, Liu J, Song M, Wang X, Ren L, Kong X. Characterization of odorous charge and photochemical reactivity of VOC emissions from a full-scale food waste treatment plant in China. J Environ Sci. 2015;29:34–44. https://doi.org/10.1016/j.jes.2014.07.031.

    Article  CAS  Google Scholar 

  73. Shi J, Deng H, Bai Z, Kong S, Wang X, Hao J, et al. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China. Sci Total Environ. 2015;515–516(x):101–8. https://doi.org/10.1016/j.scitotenv.2015.02.034.

    Article  CAS  Google Scholar 

  74. Zheng H, Kong S, Xing X, Mao Y, Hu T, DIng Y, et al. Monitoring of volatile organic compounds (VOCs) from an oil and gas station in northwest China for 1 year. Atmospheric Chemistry and Physics. 2018;18(7):4567–4595. https://doi.org/10.5194/acp-18-4567-2018.

  75. Wu X, Huang W, Zhang Y, Zheng C, Jiang X, Gao X. Characteristics and uncertainty of industrial VOCs emissions in China characteristics and uncertainty of industrial VOCs emissions in China. Aerosol Air Qual Res. 2015;15:1045–58. https://doi.org/10.4209/aaqr.2014.10.0236.

    Article  CAS  Google Scholar 

  76. Zheng C, Shen J, Zhang Y, Huang W, Zhu X, Wu X, et al. Quantitative assessment of industrial VOC emissions in China: historical trend, spatial distribution, uncertainties, and projection. Atmos Environ. 2017a;150:116–25. https://doi.org/10.1016/j.atmosenv.2016.11.023.

    Article  CAS  Google Scholar 

  77. Qi J, Zheng B, Li M, Yu F, Chen C, Liu F, et al. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China. Atmos Environ. 2017;170:156–68. https://doi.org/10.1016/j.atmosenv.2017.09.039.

    Article  CAS  Google Scholar 

  78. Zheng C, Shen J, Zhang Y, Zhu X, Wu X, Chen L, et al. Atmospheric emission characteristics and control policies of anthropogenic VOCs from industrial sources in Yangtze River Delta region, China. Aerosol Air Qual Res. 2017b;17(9):2263–75. https://doi.org/10.4209/aaqr.2016.06.0234.

    Article  CAS  Google Scholar 

  79. Yin S, Zheng J, Lu Q, Yuan Z, Huang Z, Zhong L, et al. A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China. Sci Total Environ. 2015;514:426–38. https://doi.org/10.1016/j.scitotenv.2015.01.088.

    Article  CAS  Google Scholar 

  80. • Ma Z, Liu C, Zhang C, Liu P, Ye C, Xue C, et al. The levels, sources and reactivity of volatile organic compounds in a typical urban area of Northeast China. J Environ Sci. 2019;79:121–34. https://doi.org/10.1016/j.jes.2018.11.015This paper discusses VOC characteristics, sources, reactivity, and ozone formation potential in urban Shengyang.

    Article  Google Scholar 

  81. • Feng R, Wang Q, Huang CC, Liang J, Luo K, Fan J-R, et al. Ethylene, xylene, toluene and hexane are major contributors of atmospheric ozone in Hangzhou, China, prior to the 2022 Asian Games. Environ Chem Lett. 2019;17(2):1151–60. https://doi.org/10.1007/s10311-018-00846-wThis paper discusses the ozone formation potential of different VOCs in Hangzhou over different seasons.

    Article  CAS  Google Scholar 

  82. Lu X, Chen N, Wang Y, Cao W, Zhu B, Yao T, et al. Radical budget and ozone chemistry during autumn in the atmosphere of an urban site in Central China. J Geophys Res. 2017;122(6):3672–85. https://doi.org/10.1002/2016JD025676.

    Article  CAS  Google Scholar 

  83. An J, Zou J, Wang J, Lin X, Zhu B. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. Environ Sci Pollut Res. 2015;22(24):19607–17. https://doi.org/10.1007/s11356-015-5177-0.

    Article  CAS  Google Scholar 

  84. Xu Z, Huang X, Nie W, Chi X, Xu Z. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China. Atmos Environ. 2017;168:112–24. https://doi.org/10.1016/j.atmosenv.2017.08.035.

    Article  CAS  Google Scholar 

  85. Zong R, Yang X, Wen L, Xu C, Zhu Y, Chen T, et al. Strong ozone production at a rural site in the North China Plain : mixed effects of urban plumes and biogenic emissions. J Environ Sci. 2018;71:261–70. https://doi.org/10.1016/j.jes.2018.05.003.

    Article  Google Scholar 

  86. Niu H, Mo Z, Shao M, Lu S, Xie S. Screening the emission sources of volatile organic compounds (VOCs) in China by multi-effects evaluation. Front Environ Sci Eng. 2016;10(5):1–11. https://doi.org/10.1007/s11783-016-0828-z.

    Article  CAS  Google Scholar 

  87. Ding X, He QF, Shen RQ, Yu QQ, Zhang YQ, Xin JY, et al. Spatial and seasonal variations of isoprene secondary organic aerosol in China: significant impact of biomass burning during winter. Sci Rep. 2016a;6(February):1–10. https://doi.org/10.1038/srep20411.

    Article  CAS  Google Scholar 

  88. Ding X, Zhang YQ, He QF, Yu QQ, Shen RQ, Zhang Y, et al. Spatial and seasonal variations of secondary organic aerosol from terpenoids over China. J Geophys Res. 2016b;121(24):14661–78. https://doi.org/10.1002/2016JD025467.

    Article  CAS  Google Scholar 

  89. Hu J, Wang P, Ying Q, Zhang H, Chen J, Ge X, et al. Modeling biogenic and anthropogenic secondary organic aerosol in China. Atmos Chem Phys. 2017;17(1):77–92. https://doi.org/10.5194/acp-17-77-2017.

    Article  CAS  Google Scholar 

  90. Wu K, Yang X, Chen D, Gu S, Lu Y, Jiang Q, et al. Estimation of biogenic VOC emissions and their corresponding impact on ozone and secondary organic aerosol formation in China. Atmos Res. 2020;231(July 2019):104656. https://doi.org/10.1016/j.atmosres.2019.104656.

    Article  CAS  Google Scholar 

  91. Hong Z, Zhang H, Zhang Y, Xu L, Liu T, Xiao H, et al. Secondary organic aerosol of PM 2.5 in a mountainous forest area in southeastern China: molecular compositions and tracers implication. Sci Total Environ. 2019;653:496–503. https://doi.org/10.1016/j.scitotenv.2018.10.370.

    Article  CAS  Google Scholar 

  92. Wang S, Wu D, Wang XM, Fung JCH, Yu JZ. Relative contributions of secondary organic aerosol formation from toluene, xylenes, isoprene, and monoterpenes in Hong Kong and Guangzhou in the Pearl River Delta, China: an emission-based box modeling study. J Geophys Res Atmos. 2013;118(2):507–19. https://doi.org/10.1029/2012JD017985.

    Article  CAS  Google Scholar 

  93. Liu Y, Li L, An J, Huang L, Yan R, Huang C, et al. Estimation of biogenic VOC emissions and its impact on ozone formation over the Yangtze River Delta region, China. Atmos Environ. 2018;186:113–28. https://doi.org/10.1016/j.atmosenv.2018.05.027.

    Article  CAS  Google Scholar 

  94. Mo Z, Shao M, Wang W, Liu Y, Wang M, Lu S. Evaluation of biogenic isoprene emissions and their contribution to ozone formation by ground-based measurements in Beijing, China. Sci Total Environ. 2018;627:1485–94. https://doi.org/10.1016/j.scitotenv.2018.01.336.

    Article  CAS  Google Scholar 

  95. Ren Y, Qu Z, Du Y, Xu R, Ma D, Yang G, et al. Air quality and health effects of biogenic volatile organic compounds emissions from urban green spaces and the mitigation strategies. Environ Pollut. 2017;230:849–61. https://doi.org/10.1016/j.envpol.2017.06.049.

    Article  CAS  Google Scholar 

  96. Kang J, Liu J, Pei J. The indoor volatile organic compound (VOC) characteristics and source identification in a new university campus in Tianjin, China. J Air Waste Manage Assoc. 2017;67(6):725–37. https://doi.org/10.1080/10962247.2017.1280561.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the National Nature Science Foundation of China (Nos. 41977305 and 41761144056), the Provincial Natural Science Foundation of Jiangsu (No. BK20180040), and the Jiangsu Innovation & Entrepreneurship Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Lin Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Air Pollution

Electronic Supplementary Material

ESM 1

(DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozaffar, A., Zhang, YL. Atmospheric Volatile Organic Compounds (VOCs) in China: a Review. Curr Pollution Rep 6, 250–263 (2020). https://doi.org/10.1007/s40726-020-00149-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00149-1

Keywords

Navigation