Skip to main content
Log in

Silication of Dimensionally Stable Cellulose Aerogels for Improving Their Mechanical Properties

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Dimensionally stable aerogels that retain their shapes and geometric sizes in solutions have been formed from cellulose subjected to an intense mechanical treatment in combination with freeze-thawing. This treatment has resulted in partial separation of numerous micro/nanosized fibrils that surround residual fibers. Their entanglement promotes an increase in the mechanical strength and stability of the aerogels in solutions. Silication (mineralization) of the cellulose aerogels has been performed by the sol–gel method in dilute solutions of a precursor, tetraethoxysilane, at its maximum concentration of 1 wt %. According to FTIR spectroscopy and scanning electron microscopy data, the modification has resulted in the formation of thin silica coatings on the micro/nanofibrils. The study of the mechanical properties in the compression mode has shown a substantial increase in the mechanical strength and a decrease in the elasticity of the aerogels as a result of their mineralization. For example, after the treatment in a 1% precursor solution, the Young’s modulus has increased by an order of magnitude, while the linear portion of the stress–strain curve has become shorter. At the same time, the existence of the thin silica coating on the micro/nanofibrils has no effect on the mechanical properties of the aerogels placed into aqueous solutions. This may be explained by the plasticizing effect of water adsorbed by hydrophilic cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Here, the term “silica” refers to silicon dioxide that contains some amount of bound and adsorbed water and is represented by the formula SiO2 · nH2O. It is the product of partial dehydration of polysilicic acids formed in the course of the sol–gel synthesis. This term is predominantly used in the English-language literature. However, it is also increasingly employed in Russian communications. In its essence, it is analogous to “silica gel.”

REFERENCES

  1. Kistler, S.S., J. Phys. Chem., 1931, vol. 36, p. 52.

    Article  Google Scholar 

  2. Turbak, A.F., Snyder, F.W., and Sandberg, K.R., US Patent 4374702, 1983.

  3. Turbak, A.F., Snyder, F.W., and Sandberg, K.R., J. Appl. Polym. Sci., Appl. Polym. Symp., 1983, vol. 37, p. 815.

    CAS  Google Scholar 

  4. Khlebnikov, O.N., Silantev, V.E., and Shchipunov, Y.A., Mendeleev Commun., 2018, vol. 28, p. 214.

    Article  CAS  Google Scholar 

  5. Verdolotti, L., Stanzione, M., Khlebnikov, O., Silant’ev, V., Postnova, I., Lavorgna, M., and Shchipunov, Y., Macromol. Chem. Phys., 2019, vol. 220, p. 1800372.

    Article  Google Scholar 

  6. Shchipunov, Y., Pure Appl. Chem., 2012, vol. 84, p. 2579.

    Article  CAS  Google Scholar 

  7. Boury, B. and Plumejeau, S., Green Chem., 2015, vol. 17, p. 72.

    Article  CAS  Google Scholar 

  8. Shchipunov, Y. and Postnova, I., Adv. Funct. Mater., 2018, vol. 26, Article no. 1705042.

  9. Mann, S., Nature (London), 1993, vol. 365, p. 499.

    Article  CAS  Google Scholar 

  10. Addadi, L. and Weiner, S., Angew. Chem., Int. Ed. Eng-l., 1992, vol. 31, p. 153.

    Article  Google Scholar 

  11. Bauerlein, E., Angew. Chem., Int. Ed. Engl., 2003, vol. 42, p. 614.

    Article  CAS  Google Scholar 

  12. Currie, H.A. and Perry, C.C., Ann. Botany, 2007, vol. 100, p. 1383.

    Article  CAS  Google Scholar 

  13. Ruiz-Hitzky, E., Darder, M., and Aranda, P., in Bio-Inorganic Hybrid Nanomaterials, Ruiz-Hitzky, E., Ariga, K., and Lvov, Y.M., Eds., 2008, Weinheim: Wiley-VCH, p. 1.

    Google Scholar 

  14. Bhushan, B., Biomimetics. Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, Berlin: Springer, 2016.

    Google Scholar 

  15. Patwardhan, S.V., Chem. Commun., 2011, vol. 47, p. 7567.

    Article  CAS  Google Scholar 

  16. Shchipunov, Yu.A., Silant’ev, V.E., and Postnova, I.V., Colloid J., 2012, vol. 74, p. 627.

    Article  CAS  Google Scholar 

  17. Postnova, I., Khlebnikov, O., Silant’ev, V., and Shchipunov, Y., Pure Appl. Chem., 2018, vol. 90, p. 1755.

    Article  CAS  Google Scholar 

  18. Iler, R.K., The Chemistry of Silica: Solubility, Polymerization, Colloid and Surfaces Properties, and Biochemistry, New York: Wiley, 1979.

    Google Scholar 

  19. Brinker, C.J. and Scherer, G.W., Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing, Boston: Academic, 1990.

    Google Scholar 

  20. Hench, L.L., Sol-Gel Silica. Properties, Processing and Technology Transfer, Westwood, New Jersey, USA: Noyes, 1998.

    Google Scholar 

  21. Pierre, A.C., Introduction to Sol-Gel Processing, Boston: Kluwer, 1998.

    Book  Google Scholar 

  22. Maksimov, A.I., Moshnikov, V.A., Tairov, Yu.M., and Shilova, O.A., Osnovy zol’-gel’-tekhnologii nanokompozitov (Fundamentals of Sol-Gel Technology of Nanocomposites), St. Petersburg: SPbGETU “LETI”, 2007.

  23. Shchipunov, Y.A., in Bio-Inorganic Hybrid Nanomaterials, Ruiz-Hitzky, E., Ariga, K., and Lvov, Y., Eds., 2008, Weinheym: Wiley-VCH, p. 75.

  24. Luo, Y., Xiao, L., and Zhang, X., J. Cult. Herit., 2015, vol. 16, p. 470.

    Article  Google Scholar 

  25. Hench, L.L. and West, J.K., Chem. Rev., 1990, vol. 90, p. 33.

    Article  CAS  Google Scholar 

  26. Husing, N. and Schubert, U., in Functional Hybrid Materials, Gomez-Romero, P. and Sanchez, C., Eds., 2004, Weinheim: Wiley-VCH, p. 86.

    Google Scholar 

  27. Postnova, I.V., Krekoten, A.V., Kozlova, E.A., Tsybulya, S.V., Rempel, A.A., and Shchipunov, Y.A., Russ. Chem. Bull., 2013, vol. 62, p. 976.

    Article  CAS  Google Scholar 

  28. Mathlouthi, M. and Koenig, J.L., Adv. Carbohydr. Chem. Biochem., 1986, vol. 44, p. 7.

    Article  CAS  Google Scholar 

  29. Klemm, D., Philipp, B., Heinze, T., Heinze, U., and Wagenknecht, W., Comprehensive Cellulose Chemistry. Fundamentals and Analytical Methods, Weinheim: Wiley-VCH, 1998.

    Book  Google Scholar 

  30. Poletto, M., Pistor, V., and Zattera, A.J., in Cellulose-Fundamental Aspects, Van de Ven, T. and Godbout, L., Eds., Rijeka: InTech, 2013, p. 45.

    Google Scholar 

  31. Socrates, G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts, Chichester: Wiley, 2016.

    Google Scholar 

  32. Aguiar, H., Serra, J., Gonzalez, P., and Leon, B., J. Non-Cryst. Solids, 2009, vol. 355, p. 475.

    Article  CAS  Google Scholar 

  33. Zanini, M., Lavoratti, A., Lazzari, L.K., Galiotto, D., Pagnocelli, M., Baldasso, C., and Zattera, A.J., Cellulose, 2017, vol. 24, p. 769.

    Article  CAS  Google Scholar 

  34. Maleki, H., Duraes, L., and Portugal, A., J. Non-Cryst. Solids, 2014, vol. 385, p. 55.

    Article  CAS  Google Scholar 

  35. Hubbe, M.A., Bioresources, 2006, vol. 1, p. 281.

    Google Scholar 

  36. Hirn, U. and Schennach, R., Sci. Rep., 2015, vol. 5, p. 10503.

    Article  Google Scholar 

  37. Alaoui, A.H., Woignier, T., Scherer, G.W., and Phalippou, J., J. Non-Cryst. Solids, 2008, vol. 354, p. 4556.

    Article  CAS  Google Scholar 

  38. Cai, J., Liu, S.L., Feng, J., Kimura, S., Wada, M., Kuga, S., and Zhang, L.N., Angew. Chem., Int. Ed. Engl., 2012, vol. 51, p. 2076.

    Article  CAS  Google Scholar 

  39. Liu, S., Yu, T., Hu, N., Liu, R., and Liu, X., Colloids Surf. A, 2013, vol. 439, p. 159.

    Article  CAS  Google Scholar 

  40. Demilecamps, A., Beauger, C., Hildenbrand, C., Rigacci, A., and Budtova, T., Carbohydr. Res., 2015, vol. 122, p. 293.

    Article  CAS  Google Scholar 

  41. Seantier, B., Bendahou, D., Bendahou, A., Grohens, Y., and Kaddami, H., Carbohydr. Res., 2016, vol. 138, p. 335.

    Article  CAS  Google Scholar 

  42. Nguyen, S.T., Feng, J.D., Ng, S.K., Wong, J.P.W., Tan, V.B.C., and Duong, H.M., Colloids Surf. A, 2014, vol. 445, p. 128.

    Article  CAS  Google Scholar 

  43. Guo, L.M., Chen, Z.L., Lyu, S.Y., Fu, F., and Wang, S.Q., Carbohydr. Res., 2018, vol. 179, p. 333.

    Article  CAS  Google Scholar 

  44. Alaoui, A.H., Woignier, T., Scherer, G.W., and Phalippou, J., J. Non-Cryst. Solids, 2008, vol. 354, p. 4556.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-53-52016-MNT_а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Shchipunov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khlebnikov, O.N., Postnova, I.V., Chen, LJ. et al. Silication of Dimensionally Stable Cellulose Aerogels for Improving Their Mechanical Properties. Colloid J 82, 448–459 (2020). https://doi.org/10.1134/S1061933X20040043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20040043

Navigation