Skip to main content
Log in

Angular Dependence of the Pressure Tensor in a Wedge-Shaped Cavity of a Solid

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

In addition to our previous work [1], a detailed analysis has been carried out for the angular dependences of all components of the pressure tensor in a wedge-shaped cavity of a solid with dispersion forces. It has been shown that the pressure tensor components satisfy the conditions of mechanical equilibrium as a function of the distance from the walls of the wedge-shaped cavity and the angular variable. Additional contributions to the pressure tensor relative to the tensor in a planar slit have been obtained in the case of small angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Brodskaya, E.N. and Rusanov, A.I., Colloid J., 2009, vol. 71, p. 22.

    Article  CAS  Google Scholar 

  2. Irving, J.H. and Kirkwood, J.G., J. Chem. Phys., 1950, vol. 18, p. 817.

    Article  CAS  Google Scholar 

  3. Hamaker, H.C., Phys. A (Amsterdam), 1937, vol. 4, p. 1058.

    CAS  Google Scholar 

  4. Derjaguin, B.V., Kolloidn. Zh., 1955, vol. 17, p. 207.

    Google Scholar 

  5. Rusanov, A.I. and Kuni, F.M., in Issledovaniya v oblasti poverkhnostnykh sil (Research in the Field of Surface Forces), Derjaguin, B.V., Ed., Moscow: Nauka, 1967, p. 129.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Brodskaya.

Ethics declarations

The authors declare that they have no conflict of int-erest.

Additional information

Translated by A. Muravev

Appendices

APPENDIX 1

The Irving–Kirkwood pressure tensor is determined as follows:

$$\begin{gathered} \hat {p}({\mathbf{r}}) = kT\sum\limits_i {{{\rho }_{i}}({\mathbf{r}})} \hat {1} - \frac{1}{2}\sum\limits_{i > j} {\int {d{\mathbf{R}}} \frac{{{\mathbf{R}} \times {\mathbf{R}}}}{R}\Phi _{{ij}}^{'}(R)} \\ \times \,\,\int\limits_0^1 {d\eta \rho _{{ij}}^{{(2)}}({\mathbf{r}} - \eta {\mathbf{R}},} \,{\mathbf{r}} - \eta {\mathbf{R}} + {\mathbf{R}}), \\ \end{gathered} $$

where \(\hat {p}({\mathbf{r}})\) is the pressure tensor at point r, k is the Boltzmann constant, T is the temperature, \({{\rho }_{i}}({\mathbf{r}})\) is the one-particle distribution function (local density) of the i-type particles, \(\hat {1}\) is the unit tensor, R is the vector that connects two interacting particles located at distance R from each other and passes through point r (denotation \({\mathbf{R}} \times {\mathbf{R}}\) symbolizes the direct vector product, which represents a tensor), \(\Phi _{{ij}}^{'}(R)\) is the derivative of pair interaction potential \({{\Phi }_{{ij}}}(R)\) for the particles of the i and j types (i.e., the force of the interaction between these particles), and \(\rho _{{ij}}^{{(2)}}({\mathbf{r}} - \eta {\mathbf{R}},{\mathbf{r}} - \eta {\mathbf{R}} + {\mathbf{R}})\) is the two-particle distribution function for particles that are simultaneously located at points \({\mathbf{r}} - \eta {\mathbf{R}}\) and \({\mathbf{r}} - \eta {\mathbf{R}} + {\mathbf{R}}\) on opposite sides of a unit area with coordinate r (which is controlled by auxiliary variable η).

APPENDIX 2. RESULT OF INTEGRATING EQ. (7)

$$\begin{gathered} {{I}_{{\varphi \varphi }}} = {{\sin }^{3}}{\kern 1pt} {{\theta }_{1}}{{\sin }^{3}}{\kern 1pt} {{\theta }_{2}}\ln \left( {\tan {\kern 1pt} \frac{{{{\theta }_{1}}}}{2}\tan {\kern 1pt} \frac{{{{\theta }_{2}}}}{2}} \right) \\ + \,\,3(\sin {\kern 1pt} {{\theta }_{2}} - \sin {\kern 1pt} {{\theta }_{1}}){{\sin }^{2}}{\kern 1pt} {{\theta }_{1}}{{\sin }^{2}}{\kern 1pt} {{\theta }_{2}}\sin {\kern 1pt} \Delta \\ + \,\,({{\sin }^{3}}{\kern 1pt} {{\theta }_{2}} - {{\sin }^{3}}{\kern 1pt} {{\theta }_{1}}) \\ \times \,\,\left( {\frac{1}{3}{\kern 1pt} {{{\sin }}^{3}}{\kern 1pt} \Delta - \sin {\kern 1pt} {{\theta }_{1}}\sin {\kern 1pt} {{\theta }_{2}}\sin {\kern 1pt} 2\Delta } \right) \\ - \,\,\frac{1}{5}{\kern 1pt} \sin {\kern 1pt} \Delta \left( {{{{\sin }}^{5}}{\kern 1pt} {{\theta }_{2}} - {{{\sin }}^{5}}{\kern 1pt} {{\theta }_{1}}} \right)\left( {1 - 4{\kern 1pt} {{{\cos }}^{2}}{\kern 1pt} \Delta } \right) \\ - \,\,(\cos {\kern 1pt} {{\theta }_{1}} + \cos {\kern 1pt} {{\theta }_{2}}) \\ \times \,\,\left( {\frac{3}{4}{\kern 1pt} \sin {\kern 1pt} 2{{\theta }_{1}}{\kern 1pt} \sin {\kern 1pt} 2{{\theta }_{2}}\cos {\kern 1pt} \Delta - {{{\cos }}^{3}}{\kern 1pt} \Delta } \right) \\ - \,\,({{\cos }^{3}}{\kern 1pt} {{\theta }_{1}} + {{\cos }^{3}}{\kern 1pt} {{\theta }_{2}}) \\ \times \,\,\left( {\cos {\kern 1pt} {{\theta }_{1}}{\kern 1pt} \cos {\kern 1pt} {{\theta }_{2}}\cos {\kern 1pt} 2\Delta - \frac{1}{3}{\kern 1pt} {{{\cos }}^{3}}{\kern 1pt} \Delta } \right) \\ + \,\,\frac{1}{5}({{\cos }^{5}}{\kern 1pt} {{\theta }_{1}} + {{\cos }^{5}}{\kern 1pt} {{\theta }_{2}})(1 - 4{\kern 1pt} {{\sin }^{2}}{\kern 1pt} \Delta )\cos {\kern 1pt} \Delta , \\ \end{gathered} $$
$$\begin{gathered} 5{{I}_{{zz}}} = - \frac{1}{2}\sin {\kern 1pt} {{\theta }_{1}}\sin {\kern 1pt} {{\theta }_{2}}({{\sin }^{2}}{\kern 1pt} {{\theta }_{1}}\cos {\kern 1pt} {{\theta }_{2}} \\ + \,\,{{\sin }^{2}}{\kern 1pt} {{\theta }_{2}}\cos {\kern 1pt} {{\theta }_{1}}) - \sin {\kern 1pt} {{\theta }_{1}}\sin {\kern 1pt} {{\theta }_{2}} \\ \times \,\,\left( {3\sin {\kern 1pt} {{\theta }_{1}}\sin {\kern 1pt} {{\theta }_{2}}\cos {\kern 1pt} \Delta - 3{\kern 1pt} {{{\sin }}^{2}}{\kern 1pt} \Delta \frac{{}}{{}}} \right. \\ \left. { - \,\,\frac{1}{2}{\kern 1pt} {{{\sin }}^{2}}{\kern 1pt} {{\theta }_{1}}{{{\sin }}^{2}}{\kern 1pt} {{\theta }_{2}}} \right)\ln \left( {\tan {\kern 1pt} \frac{{{{\theta }_{1}}}}{2}\tan {\kern 1pt} \frac{{{{\theta }_{2}}}}{2}} \right) \\ + \,\,(\sin {\kern 1pt} {{\theta }_{2}} - \sin {\kern 1pt} {{\theta }_{1}})({{\sin }^{3}}{\kern 1pt} \Delta - 3{\kern 1pt} \sin {\kern 1pt} {{\theta }_{1}}\sin {\kern 1pt} {{\theta }_{2}}\sin {\kern 1pt} 2\Delta \\ + \,\,3{\kern 1pt} \sin {\kern 1pt} {{\theta }_{1}}\sin {\kern 1pt} {{\theta }_{2}}\sin {\kern 1pt} \Delta ) + ({{\sin }^{3}}{\kern 1pt} {{\theta }_{2}} - {{\sin }^{3}}{\kern 1pt} {{\theta }_{1}}) \\ \times \,\,\left( {\frac{1}{2}{\kern 1pt} \cos {\kern 1pt} \Delta \sin {\kern 1pt} 2\Delta - \frac{1}{3}{\kern 1pt} {{{\sin }}^{3}}{\kern 1pt} \Delta } \right) - (\cos {\kern 1pt} {{\theta }_{1}} + \cos {\kern 1pt} {{\theta }_{2}}) \\ \times \,\,(3{\kern 1pt} \sin {\kern 1pt} {{\theta }_{1}}\sin {\kern 1pt} {{\theta }_{2}}\cos {\kern 1pt} 2\Delta - {{\cos }^{3}}{\kern 1pt} \Delta ) \\ - \,\,({{\cos }^{3}}{\kern 1pt} {{\theta }_{1}} + {{\cos }^{3}}{\kern 1pt} {{\theta }_{2}})\left( {\frac{1}{3}{\kern 1pt} {{{\cos }}^{3}}{\kern 1pt} \Delta - \frac{1}{2}{\kern 1pt} \sin {\kern 1pt} \Delta \sin {\kern 1pt} 2\Delta } \right), \\ \end{gathered} $$

\({{I}_{{rr}}} = 5{{I}_{{zz}}} - {{I}_{{\varphi \varphi }}}\) [Eq. (16)],

$$\begin{gathered} {{I}_{{r\varphi }}} = - 3{{\sin }^{2}}{{\theta }_{1}}{{\sin }^{2}}{{\theta }_{2}}\sin \Delta \ln \left( {\tan \frac{{{{\theta }_{1}}}}{2}\tan \frac{{{{\theta }_{2}}}}{2}} \right) \\ + \,\,(\sin {{\theta }_{2}} - \sin {{\theta }_{1}})\sin {{\theta }_{1}}\sin {{\theta }_{2}} \\ \times \,\,[3(\sin {{\theta }_{1}}\sin {{\theta }_{2}}\cos \Delta - {{\sin }^{2}}\Delta ) - \sin {{\theta }_{1}}\sin {{\theta }_{2}}] \\ + \,\,({{\sin }^{3}}{{\theta }_{2}} - {{\sin }^{3}}{{\theta }_{1}})({{\sin }^{2}}\Delta \cos \Delta \\ - \,\,\sin {{\theta }_{1}}\sin {{\theta }_{2}}\cos 2\Delta ) + \frac{1}{5}({{\sin }^{5}}{{\theta }_{2}} - {{\sin }^{5}}{{\theta }_{1}}) \\ \times \,\,(1 - 4{{\sin }^{2}}\Delta )\cos \Delta - 3(\cos {{\theta }_{1}} + \cos {{\theta }_{2}}){{\sin }^{2}}{{\theta }_{1}} \\ \times \,\,{{\sin }^{2}}{{\theta }_{2}}\sin \Delta + ({{\cos }^{3}}{{\theta }_{1}} + {{\cos }^{3}}{{\theta }_{2}})\sin \Delta \cos \Delta \cos \theta \\ + \,\,\frac{1}{5}({{\cos }^{5}}{{\theta }_{1}} + {{\cos }^{5}}{{\theta }_{2}})\sin \Delta (1 - 4{{\cos }^{2}}\Delta ), \\ \end{gathered} $$

where \(\Delta \equiv {{\theta }_{2}} - {{\theta }_{1}}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodskaya, E.N., Rusanov, A.I. Angular Dependence of the Pressure Tensor in a Wedge-Shaped Cavity of a Solid. Colloid J 82, 347–353 (2020). https://doi.org/10.1134/S1061933X2004002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X2004002X

Navigation