Skip to main content

Advertisement

Log in

Activation of dopamine receptor D1 inhibits glioblastoma tumorigenicity by regulating autophagic activity

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Recent studies have reported important roles of dopamine receptors in the early development and progression of glioblastoma (GBM). Here, we tested the antitumor activity of a Dopamine receptor D1 (DRD1) agonist, either alone or in combination with temozolomide (TMZ) on GBM cells.

Methods

Immunofluorescence, immunohistochemistry and Western blotting were used to detect dopamine receptor expression in primary human GBM tissues. In addition, clinical data of GBM patients downloaded from The Cancer Genome Atlas (TCGA) were analyzed. Image-based tracking analysis of LC3 using a mCherry-eGFP-LC3 plasmid was utilized to monitor autophagic flux. Transmission electron microscopy (TEM) was used to visualize aggregation of autophagosomes/autolysosomes. Finally, DRD1 agonist (SKF83959)-induced inhibition of GBM growth was assessed in vitro and in vivo.

Results

Positive DRD1 expression was observed in human GBM tissues and found to be related with a good clinical outcome. DRD1 activation specifically inhibited GBM cell growth and significantly disrupted autophagic flux, which led to tumor cell death. Moreover, we found that DRD1 agonist treatment inhibited auto-lysosomal degradation in GBM cells and that this process was calcium overload dependent and related to inhibition of mammalian target of rapamycin (mTOR). Finally, we found that DRD1 agonist and TMZ co-treatment yielded a synergistic therapeutic effect both in vivo and in vitro.

Conclusions

From our data we conclude that DRD1 activation inhibits GBM cell growth and may serve as an alternative avenue for the design of future GBM therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article, and are available from the corresponding author upon reasonable request.

References

  1. S. Lapointe, A. Perry, N.A. Butowski, Primary brain tumours in adults. Lancet 392, 432–446 (2018)

    PubMed  Google Scholar 

  2. QTd.B. Ostrom, P.M. Kruchko, C. Petersen, C.M. Liao, P. Finlay, J.S. Barnholtz-Sloan, Alex’s lemonade stand foundation infant and childhood primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro-Oncology 16, 36 (2015)

    Google Scholar 

  3. S.M. Hombach-Klonisch, M. Shojaei, S. Harlos, C. Klonisch, T. and S. Ghavami, Glioblastoma and chemoresistance to alkylating agents: Involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol. Ther. 184, 13–41 (2018)

  4. W. Taal, H.M. Oosterkamp, A.M. Walenkamp, H.J. Dubbink, L.V. Beerepoot, M.C. Hanse, J. Buter, A.H. Honkoop, D. Boerman, F.Y. de Vos, W.N. Dinjens, R.H. Enting, M.J. Taphoorn, F.W. van den Berkmortel, R.L. Jansen, D. Brandsma, J.E. Bromberg, I. van Heuvel, R.M. Vernhout, B. van, der Holt and M.J. van den Bent, Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial. Lancet Oncol. 15, 943–953 (2014)

  5. M.E.H. Roger Stupp, W.P. Mason, J. Martin, M.J.B. van den Bent, R.C. Taphoorn, S.K. Janzer, A. Ludwin, B. Allgeier, K. Fisher, P. Belanger, A. Hau, Alba, J. Brandes, C. Gijtenbeek, C.J. Marosi, Vecht, Karima Mokhtari, Pieter Wesseling, Salvador Villa, Elizabeth Eisenhauer, Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancent Oncol. 10, 459–466 (2009)

  6. H.S. Birk, S.J. Han, N.A. Butowski, Treatment options for recurrent high-grade glioma. CNS Oncol. 6, 61–70 (2017)

    CAS  PubMed  Google Scholar 

  7. S.R.N. Cristina, M.I.S.S.A.L.E. Susan, W. Robinson, M. Jaber, M.G. Caron, Dopamine receptors: From structure to function. Physiology 78, 37 (1998)

  8. Z.G.L. Leng, S.J. Wu, Z.R. Guo, Y.H. Cai, L. Shang, H.B. Zhang, X. and Z.B. Wu, Activation of DRD5 (dopamine receptor D5) inhibits tumor growth by autophagic cell death. Autophagy 13, 36 (2017)

  9. H. Yan, W.L. Li, J.J. Xu, S.Q. Zhu, X. Long, J.P. Che, D2 dopamine receptor antagonist raclopride induces non-canonical autophagy in cardiac myocytes. J. Cell. Biochem. 114, 103–110 (2013)

    CAS  PubMed  Google Scholar 

  10. S.S. Dolma, H.J. Lan, X. Lee, L. Kushida, M. Voisin, M. Tyers, P.B. Dirks, Inhibition of dopamine receptor D4 impedes autophagic flux, proliferation, and survival of glioblastoma stem cells. Cancer Cell 29, 16 (2016)

    Google Scholar 

  11. S.Z.J. Li, D. Kozono, K. Ng, D.F. Johnny, C. Stephen Elledge, C.C. Chen, Genome-wide shRNA screen revealed integrated mitogenic signaling between dopamine receptor D2 (DRD2) and epidermal growth factor receptor (EGFR) in glioblastoma. Oncotarget 5, 12 (2014)

    Google Scholar 

  12. J.D.C. Wang, Y.L. Li, Q. Yang, Y.P. Jin, M. Chen, D. and C.F. Liu, A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy 11, 18 (2015)

  13. X.J. Dongmei, J. Wang, Z. Liu, Li, X. Zhang, Dopamine receptor subtypes differentially regulate autophagy, Int. J. Mol .Sci. 19, 1540 (2018)

  14. J. Wojton, W.H. Meisen, B. Kaur, How to train glioma cells to die: molecular challenges in cell death. J. Neuro-Oncol. 126, 15 (2015)

    Google Scholar 

  15. N. Kaza, L. Kohli, K.A. Roth, Autophagy in brain tumors: a new target for therapeutic intervention. Brain Pathol. 22, 89–98 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Miracco, E. Cosci, G. Oliveri, P. Luzi, L. Pacenti, I. Monciatti, S. Mannucci, M.C. De Nisi, M. Toscano, V. Malagnino, S.M. Falzarano, L. Pirtoli, P. Tosi, Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int. J. Oncol. 30, 429–436 (2007)

    CAS  PubMed  Google Scholar 

  17. K.M. Shchors, A. Hanahan, Dual targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell 28, 17 (2015)

    Google Scholar 

  18. H. Li, B. Lei, W. Xiang, H. Wang, W. Feng, Y. Liu, S. Qi, Differences in protein expression between the U251 and U87 cell lines. Turk. Neurosurg. 27, 894–903 (2017)

    PubMed  Google Scholar 

  19. J.L. Neumeyer, N.S. Kula, J. Bergman, R.J. Baldessarini, Receptor affinities of dopamine D1 receptor-selective novel phenylbenzazepines. Eur. J. Pharmacol. 474, 137–140 (2003)

    CAS  PubMed  Google Scholar 

  20. Y.W. Li, W. Wang, F. Wu, Q. Li, W. Zhong, Y. Zhou, Paired related homeobox 1 transactivates dopamine D2 receptor to maintain propagation and tumorigenicity of glioma-initiating cells. J. Mol. Cell Biol. 9, 13 (2017)

    CAS  Google Scholar 

  21. L.-Q. Jin, S. Goswami, G. Cai, X. Zhen, E. Friedman, SKF83959 selectively regulates phosphatidylinositol-linked D1 dopamine receptors in rat brain. J. Neurochem. 85, 378–386 (2003)

  22. J. Liu, F. Wang, C. Huang, L.H. Long, W.N. Wu, F. Cai, J.H. Wang, L.Q. Ma, J.G. Chen, Activation of phosphatidylinositol-linked novel D1 dopamine receptor contributes to the calcium mobilization in cultured rat prefrontal cortical astrocytes. Cell. Mol. Neurobiol. 29, 317–328 (2009)

    CAS  PubMed  Google Scholar 

  23. A.S.U. Sandra Panchalingam, SKF83959 exhibits biochemical agonism by stimulating [35S]GTPγS binding and phosphoinositide hydrolysis in rat and monkey brain. Neuropharmacology 40, 826–837 (2001)

    Google Scholar 

  24. J.S. Kim, J.H. Wang, T.G. Biel, D.S. Kim, J.A. Flores-Toro, R. Vijayvargiya, I. Zendejas, K.E. Behrns, Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers. Toxicol. Appl. Pharmacol. 273, 600–610 (2013)

    CAS  PubMed  Google Scholar 

  25. A. Williams, S. Sarkar, P. Cuddon, E.K. Ttofi, S. Saiki, F.H. Siddiqi, L. Jahreiss, A. Fleming, D. Pask, P. Goldsmith, C.J. O’Kane, R.A. Floto, D.C. Rubinsztein, Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 4, 295–305 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Hoyer-Hansen, L. Bastholm, P. Szyniarowski, M. Campanella, G. Szabadkai, T. Farkas, K. Bianchi, N. Fehrenbacher, F. Elling, R. Rizzuto, I.S. Mathiasen, M. Jaattela, Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol. Cell 25, 193–205 (2007)

    PubMed  Google Scholar 

  27. L. Zhang, J. Yu, H. Pan, P. Hu, Y. Hao, W. Cai, H. Zhu, A.D. Yu, X. Xie, D. Ma, J. Yuan, Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl. Acad. Sci. U. S. A. 104, 19023–19028 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. D.J. Klionsky, K. Abdelmohsen, W.X. Zong, A. Zorzano, S.M. Zughaier, Guidelines for the use and interpretation of assays for monitoring autophagy, 3rd edn. Autophagy 12, 1-222 (2016)

  29. Z.G.L. Shao Jian, B. Lin, W.-D. Shang, Y.H. Le, Guo, Wei Guo Zhao, Suppression of mTOR pathway and induction of autophagydependent cell death by cabergolin. Oncotarget 6, 13 (2016)

    Google Scholar 

  30. Y. Wei, Z. Jin, H. Zhang, S. Piao, J. Lu, L. Bai, The transient receptor potential channel, vanilloid 5, induces chondrocyte apoptosis via Ca2 + CaMKII-dependent MAPK and Akt/ mTOR pathways in a rat osteoarthritis model. Cell. Physiol. Biochem. 51, 2309–2323 (2018)

    CAS  PubMed  Google Scholar 

  31. B. Sun, H. Ou, F. Ren, Y. Huan, T. Zhong, M. Gao, H. Cai, Propofol inhibited autophagy through Ca(2+)/CaMKKbeta/AMPK/mTOR pathway in OGD/R-induced neuron injury. Mol. Med. 24, 58 (2018)

    PubMed  PubMed Central  Google Scholar 

  32. A. Di Mise, G. Tamma, M. Ranieri, M. Centrone, L. van den Heuvel, D. Mekahli, E.N. Levtchenko, G. Valenti, Activation of calcium-sensing receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells. Sci. Rep. 8, 5704 (2018)

    PubMed  PubMed Central  Google Scholar 

  33. Q. Tang, G. Zheng, Z. Feng, Y. Chen, Y. Lou, C. Wang, X. Zhang, Y. Zhang, H. Xu, P. Shang, H. Liu, Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis. 8, e3081 (2017)

  34. Z. Ren, S. Chen, T. Qing, J. Xuan, L. Couch, D. Yu, B. Ning, L. Shi, L. Guo, Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology 392, 11–21 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. F. Gan, L. Hou, Y. Zhou, Y. Liu, D. Huang, X. Chen, K. Huang, Effects of ochratoxin A on ER stress, MAPK signaling pathway and autophagy of kidney and spleen in pigs. Environ. Toxicol. 32, 2277–2286 (2017)

    CAS  PubMed  Google Scholar 

  36. J.L. Jewell, R.C. Russell, K.L. Guan, Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell. Biol. 14, 133–139 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. C. Settembre, R. Zoncu, D.L. Medina, F. Vetrini, S. Erdin, S. Erdin, T. Huynh, M. Ferron, G. Karsenty, M.C. Vellard, V. Facchinetti, D.M. Sabatini, A. Ballabio, A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. J.A. Martina, Y. Chen, M. Gucek, R. Puertollano, MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. T.-C. Chou, Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440–446 (2010)

    CAS  PubMed  Google Scholar 

  40. A.H.V. Schapira, Molecular and clinical pathways to neuroprotection of dopaminergic drugs in Parkinson disease. Neurology 72, 44–50 (2009)

    Google Scholar 

  41. X.W. Yu-Long, J.-S. Lan, Z.-L. Xing, J.-C. Yu, X.-C. Lou, Ma, B. Zhang, Anti-cancer effects of dopamine in human glioma involvement of mitochondrial apoptotic and anti-inflammatory pathways. Oncotarget 8, 12 (2017)

    Google Scholar 

  42. M. Moreno-Smith, C. Lu, M.M. Shahzad, G.N. Pena, J.K. Allen, R.L. Stone, L.S. Mangala, H.D. Han, H.S. Kim, D. Farley, G.L. Berestein, S.W. Cole, S.K. Lutgendorf, A.K. Sood, Dopamine blocks stress-mediated ovarian carcinoma growth. Clin. Cancer Res. 17, 3649–3659 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. S. Ganguly, B. Basu, S. Shome, T. Jadhav, S. Roy, J. Majumdar, P.S. Dasgupta, S. Basu, Dopamine, by acting through its D2 receptor, inhibits insulin-like growth factor-I (IGF-I)-induced gastric cancer cell proliferation via up-regulation of Kruppel-like factor 4 through down-regulation of IGF-IR and AKT phosphorylation. Am. J. Pathol. 177, 2701–2707 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. T.W. Qin, C. Chen, X. Duan, C. Zhang, X. and J. Yang, Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma. Toxicol. Appl. Pharmacol. 286, 12 (2015)

  45. Y.O. Son, P. Pratheeshkumar, R.V. Roy, J.A. Hitron, L. Wang, Z. Zhang, X. Shi, Nrf2/p62 signaling in apoptosis resistance and its role in cadmium-induced carcinogenesis. J. Biol. Chem. 289, 28660–28675 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. J.Y. Lihong Zhang, H. Pan, Hu Ping, Y. Hao, W. Cai, H. Zhu, A.D. Yu, Xin Xie, Dawei Ma, and Junying Yuan, Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc. Natl. Acad Sci U.S.A. 104, 19023–19028 (2007)

  47. B. Spencer, R. Potkar, M. Trejo, E. Rockenstein, C. Patrick, R. Gindi, A. Adame, T. Wyss-Coray, E. Masliah, Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J. Neurosci. 29, 13578–13588 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. C. Huang, J. Wu, R. Liao, W. Zhang, SKF83959, an agonist of phosphatidylinositol-linked D(1)-like receptors, promotes ERK1/2 activation and cell migration in cultured rat astrocytes. PLoS One 7, e49954 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. L. Jennewein, M.W. Ronellenfitsch, P. Antonietti, E.I. Ilina, J. Jung, D. Stadel, L.M. Flohr, J. Zinke, J. von Renesse, U. Drott, P. Baumgarten, A.K. Braczynski, C. Penski, M.C. Burger, J.P. Theurillat, J.P. Steinbach, K.H. Plate, I. Dikic, S. Fulda, C. Brandts, D. Kogel, C. Behrends, P.N. Harter, M. Mittelbronn, Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget 7, 20016–20032 (2016)

    PubMed  PubMed Central  Google Scholar 

  50. W. Li, Q. Yang, Z. Mao, Signaling and induction of chaperone-mediated autophagy by the endoplasmic reticulum under stress conditions. Autophagy 14, 1094–1096 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  51. L.A. Garros-Regulez, P. Arrizabalaga, O. Moncho-Amor, V. Carrasco-Garcia, E. Manterola, L. Moreno-Cugnon, A. Matheu, mTOR inhibition decreases SOX2-SOX9 mediated glioma stem cell activity and temozolomide resistance. Expert Opin. Ther. Targets 20, 46 (2016)

    Google Scholar 

  52. J.W. Xie, X. and C.G. Proud, mTOR inhibitors in cancer therapy, F1000Research 5, 11 (2016)

  53. G.Z. Zhiyun Yu, G. Xie, L. Zhao, Y. Chen, H. Yu, Z. Zhang, C. Li, Y. Li, Metformin and temozolomide act synergistically to inhibit growth of glioma cells and glioma stem cells in vitro and in vivo. Oncotarget 6, 14 (2015)

    Google Scholar 

  54. B.D. Manning, A. Toker, AKT/PKB signaling, navigating the network, Cell 169, 381–405 (2017)

  55. J.R. Molina, Y. Hayashi, C. Stephens, M.-M. Georgescu, Invasive glioblastoma cells acquire stemness and increased Akt activation. Neoplasia 12, 453–N455 (2010)

  56. G.L. Gallia, B.M. Tyler, C.L. Hann, I.M. Siu, V.L. Giranda, A.L. Vescovi, H. Brem, G.J. Riggins, Inhibition of Akt inhibits growth of glioblastoma and glioblastoma stem-like cells. Mol. Cancer Ther. 8, 386–393 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. E. Charlier, B. Relic, C. Deroyer, O. Malaise, S. Neuville, J. Collee, M.G. Malaise, D. De Seny, Insights on molecular mechanisms of chondrocytes death in osteoarthritis, Int. J. Mol. Sci. 17, 2146 (2016)

  58. W. Ye, S. Zhu, C. Liao, J. Xiao, Q. Wu, Z. Lin, J. Chen, Advanced oxidation protein products induce apoptosis of human chondrocyte through reactive oxygen species-mediated mitochondrial dysfunction and endoplasmic reticulum stress pathways. Fundam. Clin. Pharmacol. 31, 64–74 (2017)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Zixu Mao from Emory University for his critical reading and revision advice.

Funding

This work was supported by grants from the National Natural Science Foundation of China (NSFC) [number 81430021 and 81771521], and a Liaoning provincial key research project grant [number 2018225051].

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design were performed by Kang Yang and Weidong Le. Material preparation, data collection and analysis were performed by Kang Yang, Zhaofei Yang, Zhenfa Fu, Minghai Wei, Ruixue Xu and Sheng Chen. The first draft of the manuscript was written by Kang Yang. The manuscript was reviewed and revised by Cheng Cheng, Xi Chen, Feng zhang and Eric Dammer. All authors commented on previous versions of the manuscript, and read and approved the final manuscript.

Corresponding author

Correspondence to Weidong Le.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the second hospital of DMU and followed the ethical guidelines of Declaration of Helsinki. Written informed consent was obtained from all patients whose tissues were used in this study. Mice were purchased from the Institute of Genome-Engineered Animal Models of Dalian Medical University (DMU) and were kept under specific pathogen-free (SPF) conditions. The study protocol was approved by the Animal Ethics Committee of DMU.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Wei, M., Yang, Z. et al. Activation of dopamine receptor D1 inhibits glioblastoma tumorigenicity by regulating autophagic activity. Cell Oncol. 43, 1175–1190 (2020). https://doi.org/10.1007/s13402-020-00550-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00550-4

Keywords

Navigation