Skip to main content
Log in

Thermal conductivities of a needle-punched carbon/carbon composite with unbalanced structures

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The XYZ 3-dimensional thermal conductivities of the C/C up to 2000 °C were measured by a laser flash method. Carbon fiber-reinforced carbon composites (C/C) were generally developed for aerospace missions due to their excellent thermal resistivity at ultrahigh temperature. C/C must endure harsh environments such as thousands of degrees Celsius without degradation of its mechanical properties. To solve this problem, among the passive thermal protection system, we suggest a method of conducting more heat through the mono-axial direction, which resulted in ease of the thermal rise in the heat receiving part. For example, the X-43A flight applied unbalanced C/C (UCC) with different carbon fiber orientation ratios according to the XY direction in the leading edge part. To investigate the difference in thermal conductivity between unbalanced C/C (UCC) and balanced C/C (BCC), unbalanced and balanced preforms were prepared by a needle punching process, and then they were densified by pitch infiltration and a carbonization process. We compared and analyzed the effects of unbalanced C/C(UCC) and balanced C/C (BCC) structures on the thermal conductivity. We also designed the “rule of mixtures” equation for calculating thermal conductivities of each C/C using reported data of carbon fiber and graphite matrix. Our calculations of thermal conductivity ratio match the ratio of real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Savage E (1993) Carbon-carbon composites. Springer, Netherlands. https://doi.org/10.1007/978-94-011-1586-5

    Book  Google Scholar 

  2. Dhami T, Bahl O (2005) Challenges in carbon/carbon composites technologies. Carbon Lett 6(3):148–157

    Google Scholar 

  3. Raunija TSK, Manwatkar SK, Sharma SC, Verma A (2014) Morphological optimization of process parameters of randomly oriented carbon/carbon composite. Carbon Lett 15(1):25–31

    Article  Google Scholar 

  4. Raunija TSK, Supriya N (2017) Thermo-electrical properties of randomly oriented carbon/carbon composite. Carbon Lett 22(4):25–35

    Google Scholar 

  5. Macias J, Bante-Guerra J, Cervantes-Alvarez F, Rodrìguez-Gattorno G, Arés-Muzio O, Romero-Paredes H, Arancibia-Bulnes C, Ramos-Sánchez V, Villafán-Vidales H, Ordonez-Miranda J (2019) Thermal characterization of carbon fiber-reinforced carbon composites. Appl Compos Mater 26(1):321–337

    Article  CAS  Google Scholar 

  6. Karpov A, Mostovoy G (2015) High-temperature mechanical properties of carbon and composite carbon-carbon materials. Inorg Mater Appl Res 6(5):454–460

    Article  Google Scholar 

  7. Aly-Hassan MS, Hatta H, Wakayama S, Watanabe M, Miyagawa K (2003) Comparison of 2D and 3D carbon/carbon composites with respect to damage and fracture resistance. Carbon 41(5):1069–1078

    Article  CAS  Google Scholar 

  8. Shigang A, Xiaolei Z, Yiqi M, Yongmao P, Daining F (2014) Finite element modeling of 3D orthogonal woven C/C composite based on micro-computed tomography experiment. Appl Compos Mater 21(4):603–614

    Article  Google Scholar 

  9. Shigang A, Rujie H, Yongmao P (2015) A numerical study on the thermal conductivity of 3D woven C/C composites at high temperature. Appl Compos Mater 22(6):823–835

    Article  Google Scholar 

  10. Dagli L, Remond Y (2002) Identification of the non-linear behaviour a 4D carbon–carbon material designed for aeronautic application. Appl Compos Mater 9(1):1–15

    Article  Google Scholar 

  11. Fan S, Zhang L, Xu Y, Cheng L, Lou J, Zhang J, Yu L (2007) Microstructure and properties of 3D needle-punched carbon/silicon carbide brake materials. Compos Sci Technol 67(11–12):2390–2398

    Article  CAS  Google Scholar 

  12. Zhang J, Luo R, Xiang Q, Yang C (2011) Compressive fracture behavior of 3D needle-punched carbon/carbon composites. Mater Sci Eng A 528(15):5002–5006

    Article  CAS  Google Scholar 

  13. Chen T, Liao J, Liu G, Zhang F, Gong Q (2003) Effects of needle-punched felt structure on the mechanical properties of carbon/carbon composites. Carbon 41(5):993–999

    Article  CAS  Google Scholar 

  14. Han M, Silberschmidt VV (2019) Theoretical analysis on needle-punched carbon/carbon composites. Appl Compos Mater 26(3):805–816

    Article  CAS  Google Scholar 

  15. Lawrence BD, Bogetti TA, Emerson RP (2015) Processing and characterization of needled carbon composites. US Army Research Laboratory, Aberdeen Proving Ground

    Google Scholar 

  16. Lee JY, Kang TJ (2005) Thermal conductivity of needle punched preforms made of carbon and OxiPAN fibres. Polym Polym Compos 13(1):83–92

    CAS  Google Scholar 

  17. Wang P, Zhang S, Li H, Kong J, Li W, Zaman W (2014) Variation of thermal expansion of carbon/carbon composites from 850 to 2500 °C. Ceram Int 40(1):1273–1276

    Article  CAS  Google Scholar 

  18. Luo R, Liu T, Li J, Zhang H, Chen Z, Tian G (2004) Thermophysical properties of carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity. Carbon 42(14):2887–2895

    Article  CAS  Google Scholar 

  19. Kim Y, Kamio S, Tajiri T, Hayashi T, Song S, Endo M, Terrones M, Dresselhaus M (2007) Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl Phys Lett 90(9):093125

    Article  Google Scholar 

  20. Biercuk M, Llaguno MC, Radosavljevic M, Hyun J, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769

    Article  CAS  Google Scholar 

  21. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744

    Article  CAS  Google Scholar 

  22. Nan C-W, Liu G, Lin Y, Li M (2004) Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 85(16):3549–3551

    Article  CAS  Google Scholar 

  23. Glass D Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles. In: 15th AIAA International space planes and hypersonic systems and technologies conference, 2008. p 2682

  24. Luo R, Yang C, Cheng J (2002) Effect of preform architecture on the mechanical properties of 2D C/C composites prepared using rapid directional diffused CVI processes. Carbon 40(12):2221–2228

    Article  CAS  Google Scholar 

  25. Li D, Wang H, Wang X (2007) Effect of microstructure on the modulus of PAN-based carbon fibers during high temperature treatment and hot stretching graphitization. J Mater Sci 42(12):4642–4649

    Article  CAS  Google Scholar 

  26. Yuan G, Li X, Dong Z, Xiong X, Rand B, Cui Z, Cong Y, Zhang J, Li Y, Zhang Z (2014) Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity. Carbon 68:413–425

    Article  CAS  Google Scholar 

  27. Min S, Blumm J, Lindemann A (2007) A new laser flash system for measurement of the thermophysical properties. Thermochim Acta 455(1–2):46–49

    Article  CAS  Google Scholar 

  28. Taylor R, Gilchrist K, Poston L (1968) Thermal conductivity of polycrystalline graphite. Carbon 6(4):537–544

    Article  CAS  Google Scholar 

  29. Taylor RE, Groot H (1978) Thermophysical Properties of POCO Graphite. Purdue Univ Lafayette Ind Properties Research Lab, West Lafayette

    Book  Google Scholar 

  30. Heremans J, Rahim I, Dresselhaus M (1985) Thermal conductivity and Raman spectra of carbon fibers. Phys Rev B 32(10):6742

    Article  CAS  Google Scholar 

  31. Nysten B, Issi J-P, Barton R Jr, Boyington D, Lavin J (1991) Determination of lattice defects in carbon fibers by means of thermal-conductivity measurements. Phys Rev B 44(5):2142

    Article  CAS  Google Scholar 

  32. Issi J-P, Nysten B, Piraux L (1987) Electrons and phonons as tools to characterise carbon fibres. J Phys D Appl Phys 20(3):257

    Article  CAS  Google Scholar 

  33. Mirmira S, Jackson M, Fletcher L (2001) Effective thermal conductivity and thermal contact conductance of graphite fiber composites. J Thermophys Heat Transf 15(1):18–26

    Article  CAS  Google Scholar 

  34. Taylor R, Venkata Siva SB, Rama Sreekanth PS (2018) Ceramic and carbon matrix composites. In: Beaumont PWR, Zweben CH (eds) Comprehensive composite materials II, 2nd edn. Elsevier, Amsterdam, pp 339–378

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agency for Defense Development (ADD) as a core technology research project. The authors especially thank Mr. Byoung-Joo Lim at Dai-Yang Industry Co. for discussion of ideas and specimen preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Gyu Paik.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Lee, H.I. & Paik, J.G. Thermal conductivities of a needle-punched carbon/carbon composite with unbalanced structures. Carbon Lett. 31, 463–471 (2021). https://doi.org/10.1007/s42823-020-00174-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00174-6

Keywords

Navigation