Skip to main content
Log in

Photoinduced Quantum Tunneling Model Applied to an Organic Molecule

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

The paper proposes a photoinduced quantum tunneling model of electron transfer through four quantum square wells potential to simulate the biological process of photosynthesis in bacteria. The problem is mathematically exact with mathematical transcendental equations solved graphically. This simplified model allowed the calculation of the characteristic tunneling times of the process. A comparison is made between the results obtained in the model and the experimental data of the organic molecule Rhodobacter sphaeroides photosynthetic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Merzbacher, . Phys. Today. 55, 44 (2002)

    Article  Google Scholar 

  2. M. Razavy, Quantum Theory of Tunneling. Wiley (2003)

  3. D. DeVault. Quantum Mechanical Tunneling in Biological Systems (Cambridge University Press, Cambridge, 1983)

    Google Scholar 

  4. J. McFadden, J. Al-Khalili, . Proc. Royal Soc. A. 474, 0674 (2018)

    Google Scholar 

  5. J. Cao, et al., . Sci. Adv. 6, 4888 (2020)

    Article  ADS  Google Scholar 

  6. N. Lambert, et al., . Nat. Phys. 9, 10 (2013)

    Article  Google Scholar 

  7. J.C. Brookes, . Proc. Math Phys. Eng. Sci. 473, 20160822 (2017)

    Article  Google Scholar 

  8. A.R. Marcus, . J. Electroanal. Chem. 438, 251–259 (1997)

    Article  Google Scholar 

  9. H.B. Gray, J.R. Winkler, . Annu. Rev. Biochem. 65, 537–561 (1996). https://doi.org/10.1146/annurev.bi.65.070196.002541

    Article  Google Scholar 

  10. T. Kubar, M. Elstner, . J. R. Soc. Interface. 10, 0415 (2013). https://doi.org/10.1098/rsif.2013.0415

    Article  Google Scholar 

  11. H. Xin, W.J. Sim, B. Namgung, Y. Choi, B. Li, L.P. Lee, . Nat. Commun. 10, 3245 (2019)

    Article  ADS  Google Scholar 

  12. M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, . J. Phys. Chem. 129, 174106 (2008)

    Article  Google Scholar 

  13. H.L. Hodges, R.A. Holwerda, H.B. Gray, . J. Am. Chem. Soc. 96, 3132–3137 (1974)

    Article  Google Scholar 

  14. T. Takano, R. Swanson, O.N. Kallai, R.D. Dickerson, Cold spring harbor symp. Quant. Biol. 36, 397–404 (1971)

    Article  Google Scholar 

  15. D. DeVault, B. Chance, . Biophys. J. 6, 825–847 (1966)

    Article  ADS  Google Scholar 

  16. J.J. Hopfield, . Proc. Nat. Acad. Sci. USA. 71, 3640–3644 (1974)

    Article  ADS  Google Scholar 

  17. T. Forster, . Naturwissenschaften. 33, 166–182 (1946)

    Article  ADS  Google Scholar 

  18. G. Vijaya, A. Alemu, A. Freundlich, in . Proc. SPIE 8620, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices II, 86201D. https://doi.org/10.1117/12.2002621, (2013)

  19. J.J. Warren, J.R. Winkler, H.B. Gray, . Coord. Chem. Rev. 257, 165–170 (2013)

    Article  Google Scholar 

  20. H. Wang, Y. Hao, Y. Jiang, S. Lin, N.W. Woodbury, . J. Phys. Chem. B. 116, 711–717 (2012)

    Article  Google Scholar 

  21. K.H. Paulino, E. Drigo Filho, A.R. Pulici, R.M. Ricotta, . Rev. Bras. de Ensino de Física. 32, 4306–1-4306-8 (2010). https://doi.org/10.1590/S1806-11172010000400006

    Article  Google Scholar 

  22. C. Cohen-Tannoudji, B. Diu, F. Laloë, Vol. 1. Quantum Mechanics (Herman, Paris, 1977)

    MATH  Google Scholar 

  23. D.Y. Oberli, J. Shah, T.C. Damen, C.W. Tu, T.Y. Chang, D.A.B. Miller, J.E. Henry, R.F. Kopf, N. Sauer, A.E.D. Giovanni, . Phis. Rev. B. 40, 3028–3031 (1989)

    Article  ADS  Google Scholar 

  24. M.H. Degani, M.Z. Maialle, . J. Comput Theor. Nanosci. 7, 454–473 (2010)

    Article  Google Scholar 

  25. A.A. Sousa, A. Chaves, T.A.S. Pereira, G.A. Farias, F.M. Peeters, . J. Appl. Phys. 118, 174301–174301-8 (2015)

    Article  ADS  Google Scholar 

  26. E. Drigo Filho, R.M. Ricotta, . Phys. Lett. A. 269, 269–276 (2000)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Ricotta.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drigo Filho, E., Jubilato, K.H.P. & Ricotta, R.M. Photoinduced Quantum Tunneling Model Applied to an Organic Molecule. Braz J Phys 50, 575–581 (2020). https://doi.org/10.1007/s13538-020-00782-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00782-7

Keywords

Navigation