Skip to main content
Log in

A Conjecture on the Relationship Between Critical Residual Entropy and Finite Temperature Pseudo-transitions of One-dimensional Models

  • Condensed Matter
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Recently pseudo-critical temperature clues were observed in one-dimensional spin models, such as the Ising-Heisenberg spin models, among others. Here we report a relationship between the zero-temperature phase boundary residual entropy (critical residual entropy) and pseudo-transition. Usually, the residual entropy increases in the phase boundary, which means the system becomes more degenerate at the phase boundary compared with its adjacent states. However, this is not always the case; at zero temperature, there are some phase boundaries where the entropy holds the largest residual entropy of the adjacent states. Therefore, we can propose the following conjecture: If residual entropy at zero temperature is a continuous function at least from the one-sided limit at a critical point, then pseudo-transition evidence will appear at finite temperature near the critical point. We expect that this argument would apply to study more realistic models. Only by analyzing the residual entropy at zero temperature, one could identify a priori whether the system will exhibit the pseudo-transition at finite temperature. To strengthen our conjecture, we use two examples of Ising-Heisenberg models, which exhibit pseudo-transition behavior: one frustrated coupled tetrahedral chain and another unfrustrated diamond chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. van Hove, . Physica. 16, 137 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  2. J.A. Cuesta, A. Sanchez, . J. Stat. Phys. 115, 869 (2004)

    Article  ADS  Google Scholar 

  3. N.D. Mermin, H. Wagner, . Phys. Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  4. C. Kittel, . Am. J. Phys. 917, 37 (1969)

    Google Scholar 

  5. S.T. Chui, J.D. Weeks, . Phys. Rev. B. 23, 2438 (1981)

    Article  ADS  Google Scholar 

  6. T. Dauxois, M. Peyrard, . Phys. Rev. E. 51, 4027 (1995)

    Article  ADS  Google Scholar 

  7. P. Sarkanych, Y. Holovatch, R. Kenna, . Phys. Lett. A. 381, 3589 (2017)

    Article  ADS  Google Scholar 

  8. F. Ninio, . J. Phys. A: Math Gen. 9, 1281 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  9. P.N. Timonin, . J. Exp. Theor. Phys. 113, 251 (2011)

    Article  ADS  Google Scholar 

  10. I.M. Carvalho, J. Torrico, S.M. de Souza, O. Rojas, O. Derzhko, . Ann. Phys. 402, 45 (2019)

    Article  ADS  Google Scholar 

  11. I.M. Carvalho, J. Torrico, S.M. de Souza, M. Rojas, O. Rojas, J. Magn, . Magn. Mats. 465, 323 (2018)

    Article  ADS  Google Scholar 

  12. S.M. de Souza, O. Rojas, . Sol. State. Comm. 269, 131 (2018)

    Article  ADS  Google Scholar 

  13. J. Torrico, M. Rojas, S.M. de Souza, O. Rojas, N.S. Ananikian, . Eur. Phys. Lett. 108, 50007 (2014)

    Article  ADS  Google Scholar 

  14. J. Torrico, M. Rojas, S.M. de Souza, O. Rojas, . Phys. Lett. A. 380, 3655 (2016)

    Article  ADS  Google Scholar 

  15. J. Strecka, Acta Phys. Pol. A 137, 610 (2020); arXiv:2002.06942

  16. L. Galisova, J. Strecka, . Phys. Rev. E. 91, 022134 (2015)

    Article  ADS  Google Scholar 

  17. O. Rojas, J. Strečka, S.M. de Souza, . Sol. State. Comm. 246, 68 (2016)

    Article  ADS  Google Scholar 

  18. J. Strecka, R.C. Alecio, M. Lyra, O. Rojas, . J. Magn. Magn. Mats. 409, 124 (2016)

    Article  ADS  Google Scholar 

  19. I. Syozi, . Prog. Theor. Phys. 6, 341 (1951). M. Fisher, Phys. Rev. 113, 969 (1959); O. Rojas, J. S. Valverde, S. M. de Souza, Physica A 388, 1419 (2009); J. Strečka, Phys. Lett. A 374, 3718 (2010); O. Rojas, S. M. de Souza, J. Phys. A: Math. Theor., 44, 245001 (2011)

    Article  MathSciNet  Google Scholar 

  20. J. Stewart, Single Variable Calculus Early Transcendentals, 7th Ed. Brooks/Cole (2012); O. Rojas, Acta Phys. Pol. A 137, 933 (2020)

  21. K. Karlova, J. Strecka, T. Madaras, . Physica B. 488, 49 (2016)

    Article  ADS  Google Scholar 

  22. M. Mambrini, J. Trebosc, F. Mila, . Phys. Rev. B. 59, 13806 (1999)

    Article  ADS  Google Scholar 

  23. O. Rojas, F.C. Alcaraz, . Phys. Rev. B. 67, 174401 (2003)

    Article  ADS  Google Scholar 

  24. L. Galisova, . Phys. Rev. E. 96, 052110 (2017)

    Article  ADS  Google Scholar 

  25. V. Ohanyan, . Cond. Matt. Phys. 12, 343 (2009)

    Article  Google Scholar 

  26. D. Antonosyan, S. Bellucci, V. Ohanyan, . Phys. Rev. B. 79, 014432 (2009)

    Article  ADS  Google Scholar 

  27. O. Rojas, J. Strečka, O. Derzhko, S.M. de Souza, . J. Phys: Condens. Matter. 32, 035804 (2020)

    ADS  Google Scholar 

Download references

Funding

This work was partially supported by ICTP and Brazilian agencies CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onofre Rojas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Discontinuous Residual Entropy

Appendix. Discontinuous Residual Entropy

When CRE is larger than its neighboring residual entropy at zero temperature, it means a discontinuous residual entropy because of \(G_{c}>\max \limits (g_{1,0},g_{-1,0})\). Then, to obtain the residual entropy we can use the free energy (4) in the limit \(T\rightarrow 0\). Below we get for some particular cases, the residual entropy at zero temperature.

1.1 A.1. Phase Boundary Between States of Sector n = 0 and n = ± 1

Here let us consider the sector n = 1 and n = 0, where the lowest energies are given by \(\varepsilon _{_{1,0}}(x)\) and \(\varepsilon _{_{0,0}}(x)\). Then the phase boundary occurs when \(\varepsilon _{_{1,0}}(x_{c})=\varepsilon _{_{0,0}}(x_{c})=\varepsilon _{c}\) with corresponding degeneracies \(g_{1,0}^{c}\) and \(g_{-1,0}^{c}\). Eventually, we could have \(g_{1,0}^{c}\geqslant g_{1,0}\) and \(g_{0,0}^{c}\geqslant g_{0,0}\). The lowest energy ε− 1,0(x) in sector n = − 1, will be strictly higher than εc (ε− 1,0 > εc), what means \(w_{-1}/w_{0}\rightarrow 0\) and \(w_{-1}/w_{1}\rightarrow 0\) when \(T\rightarrow 0\). So the free energy in (4) at sufficiently low temperature becomes

$$ f=-\frac{1}{\beta}\ln\left[\frac{1}{2}\left( g_{1,0}^{c}+\sqrt{(g_{1,0}^{c})^{2}+4(g_{0,0}^{c})^{2}}\right)\mathrm{e}^{-\beta\varepsilon_{c}}\right]. $$
(A.1)

Consequently, the CRE turns in

$$ \mathcal{S}_{c}=\ln\left[\frac{1}{2}\left( g_{1,0}^{c}+\sqrt{(g_{1,0}^{c})^{2}+4(g_{0,0}^{c})^{2}}\right)\right], $$
(A.2)

where the critical degeneracy results in \(G_{c}=\frac {1}{2}\left (g_{1,0}^{c}+\sqrt {(g_{1,0}^{c})^{2}+4(g_{0,0}^{c})^{2}}\right )\).

We can observe the critical degeneracy is strictly larger than its adjacent degeneracies: Gc > g1,0 and Gc > g0,0. The residual entropy is reported schematically in Fig. 1c. Note that the, residual entropy \({\mathcal {S}}_{a}\) and \({\mathcal {S}}_{b}\) denote in general a residual entropy between adjacent states.

For sector n = − 1 and n = 0, the result of free energy will be equivalent to the previous case. Therefore we can obtain merely by exchanging \(\varepsilon _{_{1,0}}(x_{c})\rightarrow \varepsilon _{_{-1,0}}(x_{c})\), in expression (A.2).

1.2 A.2. Phase Boundary Lying in a Single Sector

Assuming that occurs a phase transition between two states with energies ε1,0(x) and ε1,1(x), then the critical energy is given by ε1,0(xc) = ε1,1(xc) = εc at T = 0. In general, it is possible that some additional states can coincide at the phase boundary, then the degeneracies can be eventually expressed satisfying the condition \(g_{1,0}^{c}\geqslant g_{1,0}\) and \(g_{1,1}^{c}\geqslant g_{1,1}\). Therefore, all other energy levels must be higher than εc, so when \(T\rightarrow 0\), the spectral energy in other sectors can be neglected (\(w_{0}/w_{1}\rightarrow 0\) and \(w_{-1}/w_{1}\rightarrow 0\)). Hence, the free energy in the low-temperature limit is expressed as

$$ \begin{array}{@{}rcl@{}} f&=& -\frac{1}{\beta}\ln\left( w_{1}\right)=-\frac{1}{\beta}\ln\left( g_{1,0}^{c}\mathrm{e}^{-\beta\varepsilon_{c}}+g_{1,1}^{c}\mathrm{e}^{-\beta\varepsilon_{c}}\right) \\ &=& -\frac{1}{\beta}\ln\left[\left( g_{1,0}^{c}+g_{1,1}^{c}\right)\mathrm{e}^{-\beta\varepsilon_{c}}\right]. \end{array} $$
(A.3)

Whereas, the corresponding critical residual entropy, reduces to

$$ \mathcal{S}_{c}=\ln\left( g_{1,0}^{c}+g_{1,1}^{c}\right). $$
(A.4)

Thereby, the critical degeneracy is given by \(G_{c}=(g_{1,0}^{c}+g_{1,1}^{c})\).

Once again, the CRE is strictly higher than any residual entropy of adjacent states, because \(G_{c}>g_{1,0}^{c}\) and \(G_{c}>g_{1,1}^{c}\). A schematic representation of this type of CRE is illustrated in Fig. 1c.

1.3 A.3. Phase Boundary Lying in Three Sectors

When three sectors can constitute the phase boundary, the states with energies \(\varepsilon _{_{1,0}}(x)\), \(\varepsilon _{_{0,0}}(x)\) and \(\varepsilon _{_{-1,0}}(x)\), can coexist for a particular xc (a critical point). So we must assume \(\varepsilon _{_{1,0}}(x_{c})=\varepsilon _{_{0,0}}(x_{c})=\varepsilon _{_{-1,0}}(x_{c})=\varepsilon _{c}\), and the respective degeneracies are \(g_{1,0}^{c}\), \(g_{0,0}^{c}\) and \(g_{-1,0}^{c}\). In this case, the free energy becomes

$$ \begin{array}{@{}rcl@{}} f&=& -\frac{1}{\beta}\ln\left[\frac{1}{2}\left( g_{1,0}^{c}+g_{-1,0}^{c}+\right.\right. \\ &&\left.\left.+\sqrt{(g_{1,0}^{c}-g_{-1,0}^{c})^{2}+4(g_{0,0}^{c})^{2}}\right)\mathrm{e}^{-\beta\varepsilon_{c}}\right]. \end{array} $$
(A.5)

Finally, the CRE reads

$$ \mathcal{S}_{c}=\ln\left[\frac{1}{2}\left( g_{1,0}^{c}+g_{-1,0}^{c}+\sqrt{(g_{1,0}^{c}-g_{-1,0}^{c})^{2}+4(g_{0,0}^{c})^{2}}\right)\right]. $$
(A.6)

Then, the critical degeneracy is \(G_{c}=\frac {1}{2}\left (g_{1,0}^{c}+g_{-1,0}^{c}+\sqrt {(g_{1,0}^{c}-g_{-1,0}^{c})^{2}+4(g_{0,0}^{c})^{2}}\right )\).

Similar to the previous cases, the CRE is strictly larger than its adjacent states residual entropies, because \(G_{c}>g_{1,0}^{c}\), \(G_{c}>g_{0,0}^{c}\) and \(G_{c}>g_{-1,0}^{c}\).

In all aforementioned cases, the CRE inevitably exhibits a jump-point discontinuity or a point discontinuity at xc (see Fig. 1c, d). Because the CRE is strictly larger than its adjacent states residual entropy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, O. A Conjecture on the Relationship Between Critical Residual Entropy and Finite Temperature Pseudo-transitions of One-dimensional Models. Braz J Phys 50, 675–686 (2020). https://doi.org/10.1007/s13538-020-00773-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00773-8

Keywords

Navigation