Skip to main content
Log in

In Vivo Treatment with the Combination of Nitazoxanide and Flubendazole Induces Gluconeogenesis and Protein Catabolism in Taenia crassiceps cysticerci

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Cysticercosis is the presence of Taenia solium larvae in humans or swines tissues. It is a public health problem related to bad hygienic habits and consumption of infected pork. T. crassiceps is a widely used cysticercosis experimental model. The combination of two effective drugs such as nitazoxanide (NTZ) and flubendazole (FBZ) may potentialize their effect. The aim of this study was to use biochemical analysis to determine the metabolic impact of the combination of NTZ and FBZ on cysticerci inoculated intraperitoneally in mice.

Methods

Balb/c mice intraperitoneally infected with T. crassiceps cysticerci received a single oral dose NTZ/FBZ (50 mg/kg). 24 h after the treatment the cysticerci were removed, frozen and analyzed by high performance liquid chromatography regarding the detection of the following metabolic pathways: glycolysis, gluconeogenesis, homolactic fermentation, tricarboxylic acid cycle, proteins catabolism and fatty acids oxidation.

Results

The treatment with the drugs combination induced a statistically significant increase in gluconeogenesis and in protein catabolism when compared to the control groups.

Conclusion

The drugs combination is potentialized and capable of causing greater metabolic stress than the separate treatment with NTZ or FBZ, showing its potential for an alternative cysticercosis treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

All data and materials are available at the Tropical Pathology and Public Health Institute, Federal University of Goias.

References

  1. Carabin H, Winkler AS, Dorny P (2017) Taenia solium cysticercosis and taeniosis: achievements from the past 10 years and the way forward. PLoS Negl Trop Dis 11:e0005478. https://doi.org/10.1371/journal.pntd.0005478

    Article  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization (2019) Taeniasis/cysticercosis factsheet. WHO news room, World Health Organization, Geneva. https://www.who.int/news-room/fact-sheets/detail/taeniasis-cysticercosis. Accessed 15 Jun 2019. (Published on 21st of May 2019)

  3. Chembensofu M, Mwape KE, Van Damme I, Hobbs E, Phiri IK, Masuku M, Zulu G, Colston A, Willingham AL, Devleesschauwer B, Van Hul A, Chota A, Speybroeck N, Berkvens D, Dorny P, Gabriel S (2017) Re-visiting the detection of porcine cysticercosis based on full carcass dissections of naturally Taenia solium infected pigs. Parasit Vectors 10:572. https://doi.org/10.1186/s13071-017-2520-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Johansen MV, Trevisan C, Gabriel S, Magnussen P, Braae UC (2017) Are we ready for Taenia solium cysticercosis elimination in sub-Saharan Africa? Parasitology 144:59–64. https://doi.org/10.1017/S0031182016000500

    Article  PubMed  Google Scholar 

  5. James CE, Hudson AL, Davey MW (2009) Drug resistance mechanisms in helminths: is it survival of the fittest? Trends Parasitol 25(7):328–335. https://doi.org/10.1016/j.pt.2009.04.004

    Article  CAS  PubMed  Google Scholar 

  6. Loker ES (2015) This de-wormed world? J Parasitol 99:933–942. https://doi.org/10.1645/13-390.1

    Article  Google Scholar 

  7. Mkupasi EM, Sikasunge CS, Ngowi HA, Johansen MV (2013) Efficacy and safety of anthelmintics tested against Taenia solium cysticercosis in pigs. PLoS Negl Trop Dis 7:e2200. https://doi.org/10.1371/journal.pntd.0002200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ng-Nguyen D, Noh J, Breen K, Stevenson MA, Handali S, Traub RJ (2018) The epidemiology of porcine Taenia solium cysticercosis in communities of the Central Highlands in Vietnam. Parasit Vectors 11:360. https://doi.org/10.1186/s13071-018-2945-y

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lacey E (1990) Mode of action of benzimidazoles. Parasitol Today 6:112–115. https://doi.org/10.1016/0169-4758(90)90227-U

    Article  CAS  PubMed  Google Scholar 

  10. Cumino AC, Elissondo MC, Denegri GM (2009) Flubendazole interferes with a wide spectrum of cell homeostatic mechanisms in Echinococcus granulosus protoscoleces. Parasitol Int 58:270–277. https://doi.org/10.1016/j.parint.200

    Article  CAS  PubMed  Google Scholar 

  11. Geary TG, Mackenzie CD, Silber SA (2019) Flubendazole as a macrofilaricide: history and background. PLoS Negl Trop Dis 13:e0006436. https://doi.org/10.1371/journal.pntd.0006436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gilles HM, Hoffman PS (2002) Treatment of intestinal parasitic infections: a review of nitazoxanide. Trends Parasitol 18:95–97. https://doi.org/10.1016/S1471-4922(01)02205-X

    Article  PubMed  Google Scholar 

  13. Shakya A, Bhat HR, Ghosh SK (2018) Update on nitazoxanide: a multifunctional chemotherapeutic agent. Curr Drug Discov Technol 15:201–213. https://doi.org/10.2174/1570163814666170727130003

    Article  CAS  PubMed  Google Scholar 

  14. De Lange A, Mahanty S, Raimondo JV (2019) Model systems for investigating disease processes in neurocysticercosis. Parasitology 146:553–562. https://doi.org/10.1017/s0031182018001932

    Article  PubMed  Google Scholar 

  15. Maldonado G, Nava G, Plancarte A (2018) Two glutathione transferase isoforms isolated from juvenile cysts of Taenia crassiceps: identification, purification and characterization. J Helminthol 92:687–695. https://doi.org/10.1017/S0022149X17000931

    Article  CAS  PubMed  Google Scholar 

  16. Vaz AJ, Nunes CM, Piazza RM, Livramento JA, Da Silva MV, Nakamura PM (1997) Immunoblot with cerebrospinal fluid from patients with neurocysticercosis using antigen from cysticerci of Taenia solium and Taenia crassiceps. Am J Trop Med Hyg 57:354–357. https://doi.org/10.4269/ajtmh.1997.57.354

    Article  CAS  PubMed  Google Scholar 

  17. Vinaud MC, Lino Junior RS, Bezerra JCB (2007) Taenia crassiceps organic acids detected in cysticerci. Exp Parasitol 116:335–339. https://doi.org/10.1016/j.exppara.2007.01.013

    Article  CAS  PubMed  Google Scholar 

  18. Nasareth JM, Fraga CM, Lima NF, Picanço GA, Costa TL, Lino-Junior RS, Vinaud MC (2017) In vivo treatment with nitazoxanide induces anaerobic metabolism in experimental intraperitoneal cysticercosis. Parasitol Res 116:3037–3041. https://doi.org/10.1007/s00436-017-5614-8

    Article  PubMed  Google Scholar 

  19. Picanço GA, Lima NF, Fraga CM, Costa TL, Isac E, Ambrosio J, Castillo R, Vinaud MC (2017) A benzimidazole derivative (RCB15) in vitro induces the alternative energetic metabolism and glycolysis in Taenia crassiceps cysticerci. Acta Trop 176:288–292. https://doi.org/10.1016/j.actatropica.2017.08.022

    Article  CAS  Google Scholar 

  20. Lima NF, Picanço GA, Alves DSMM, Silva LD, Isac E, Costa TL, Lino Junior RS, Vinaud MC (2019) Oral nitazoxanide treatment of experimental neurocysticercosis induces gluconeogenesis in Taenia crassiceps cysticerci. Acta Trop 190:361–364. https://doi.org/10.1016/j.actatropica.2018.12.017

    Article  CAS  PubMed  Google Scholar 

  21. Fraga CM, Costa TL, Bezerra JCB, Lino-Junior RS, Vinaud MC (2012) Taenia crassiceps: host treatment alters glycolisis and tricarboxilic acid cycle in cysticerci. Exp Parasitol 130:146–151. https://doi.org/10.1016/j.exppara.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  22. McCracken RO, Lipkowitz KB (1990) Structure-activity relationships of benzothiazole and benzimidazole anthelmintics: a molecular modeling approach to in vivo drug efficacy. J Parasitol 76(6):853–864

    Article  CAS  Google Scholar 

  23. Maslowski KM (2019) Metabolism at the centre of the host-microbe relationship. Clin Exp Immunol 197(2):193–204. https://doi.org/10.1111/cei.13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Barragry T (1984) Anthelmintics—a review. N Z Vet J 32(10):161–164. https://doi.org/10.1080/00480169.1984.35109

    Article  Google Scholar 

  25. Corbin I, Simcoff R, Novak M, Blackburn BJ (1998) Metabolism of [3-(13)C]-pyruvate by cysticerci of Taenia crassiceps. Parasitol Res 84:516–518. https://doi.org/10.1007/s004360050439

    Article  CAS  PubMed  Google Scholar 

  26. Tielens AGM (1994) Energy generation in parasitic helminths. Parasitol Today 10:346–352. https://doi.org/10.1016/0169-4758(94)90245-3

    Article  CAS  PubMed  Google Scholar 

  27. Tkachuck RD, Saz HJ, Weinstein PP, Finnegan K, Mueller JF (1977) The presence and possible function of methylmalonyl-CoA and propionyl-CoA carboxylase in Spirometra mansonoides. J Parasitol 63:769–774

    Article  CAS  Google Scholar 

  28. Vinaud MC, Ferreira CS, Lino Júnior RS, Bezerra JCB (2009) Taenia crassiceps: fatty acids oxidation and alternative energy source in vitro cysticercoci exposed to anthelminthic drugs. Exp Parasitol 122:208–211. https://doi.org/10.1016/j.exppara.2009.03.015

    Article  CAS  PubMed  Google Scholar 

  29. Cvilink V, Lamka J, Skálová L (2009) Xenobiotic metabolizing enzymes and metabolism of anthelminthics in helminths. Drug Metab Rev 41(1):8–26. https://doi.org/10.1080/036025308026028809.03.005

    Article  CAS  PubMed  Google Scholar 

  30. Tielens AGM, van Grinsven KWA, Henze K, van Hellemond JJ, Martin W (2010) Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol 40:387–397. https://doi.org/10.1016/j.ijpara.2009.12.006

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq) (grant numbers 302159/2016-9, 301822/2019-0).

Author information

Authors and Affiliations

Authors

Contributions

NFL designed the work, data acquisition, analysis and interpretation; GAP and TLC performed data acquision and analysis; RSLJ critical review of the manuscript, MCV conception and design of the work, interpretation of the data, drafting and final approval of the version to be published.

Corresponding author

Correspondence to Marina C. Vinaud.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics Approval

The Ethics Committee in Animal Use of the Federal University of Goias (CEUA/UFG) approved this study under the protocol number 048/17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, N.F., Picanço, G.A., Costa, T.L. et al. In Vivo Treatment with the Combination of Nitazoxanide and Flubendazole Induces Gluconeogenesis and Protein Catabolism in Taenia crassiceps cysticerci. Acta Parasit. 66, 98–103 (2021). https://doi.org/10.1007/s11686-020-00263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-020-00263-6

Keywords

Navigation