Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association studies in Samoans give insight into the genetic architecture of fasting serum lipid levels

Abstract

The current understanding of the genetic architecture of lipids has largely come from genome-wide association studies (GWAS). To date, few GWAS have examined the genetic architecture of lipids in Polynesians, and none have in Samoans, whose unique population history, including many population bottlenecks, may provide insight into the biological foundations of variation in lipid levels. Here we performed a GWAS of four fasting serum lipid levels: total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and triglycerides (TG) in a sample of 2849 Samoans, with validation genotyping for associations in a replication cohort comprising 1798 Samoans and American Samoans. We identified multiple genome-wide significant associations (P < 5 × 10−8) previously seen in other populations—APOA1 with TG, CETP with HDL, and APOE with TC and LDL—and several suggestive associations (P < 1 × 10−5), including an association of variants downstream of MGAT1 and RAB21 with HDL. However, we observed different association signals for variants near APOE than what has been previously reported in non-Polynesian populations. The association with several known lipid loci combined with the newly identified associations with variants near MGAT1 and RAB21 suggest that while some of the genetic architecture of lipids is shared between Samoans and other populations, part of the genetic architecture may be Polynesian-specific.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The discovery cohort data are available from dbGaP (accession number: phs000914.v1.p1). The data from the replication cohort (recruited in 1990–1995 and 2002–2003) are not available as participants were not consented for data sharing.

References

  1. Hawley NL, Minster RL, Weeks DE, Viali S, Reupena MS, Sun G, et al. Prevalence of adiposity and associated cardiometabolic risk factors in the samoan genome-wide association study. Am J Hum Biol. 2014;26:491–501.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Keighley E, McGarvey ST, Quested C, Mccuddin C, Viali S, Maga UA. Nutrition and health in modernizing Samoans: temporal trends and adaptive perspectives. In: Ohtsuka R, Ulijaszek SJ, editors. Health Change in the Asia-Pacific Region: Biocultural and Epidemiological Approaches. Cambridge, NY: Cambridge University Press; 2007. p. 147–91.

    Chapter  Google Scholar 

  3. McGarvey ST. Cardiovascular disease (CVD) risk factors in Samoa and American Samoa, 1990–95. Pac Health Dialog 2001;8:157–62.

    CAS  PubMed  Google Scholar 

  4. Kannel WB, Castelli WP, Gordon T, McNamara PM. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. Framingham Study Ann Intern Med 1971;74:1–12.

    Article  CAS  PubMed  Google Scholar 

  5. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 1977;62:707–14.

    Article  CAS  PubMed  Google Scholar 

  6. Roeters van Lennep J, Westerveld HT, Erkelens DW, van der Wall EE. Risk factors for coronary heart disease: implications of gender. Cardiovasc Res. 2002;53:538–49.

    Article  CAS  PubMed  Google Scholar 

  7. Lange LA, Willer CJ, Rich SS. Recent developments in genome and exome-wide analyses of plasma lipids. Curr Opin Lipido. 2015;26:96–102.

    Article  CAS  Google Scholar 

  8. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Burkhardt R, Kenny EE, Lowe JK, Birkeland A, Josowitz R, Noel M, et al. Common SNPs in HMGCR in micronesians and whites associated with LDL-cholesterol levels affect alternative splicing of exon13. Arterioscler Thromb Vasc Biol 2008;28:2078–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lowe JK, Maller JB, Pe’er I, Neale BM, Salit J, Kenny EE, et al. Genome-wide association studies in an isolated founder population from the Pacific Island of Kosrae. PLoS Genet 2009;5:e1000365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dumitrescu L, Carty CL, Taylor K, Schumacher FR, Hindorff LA, Ambite JL, et al. Genetic determinants of lipid traits in diverse populations from the population architecture using genomics and epidemiology (PAGE) study. PLoS Genet 2011;7:e1002138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Åberg K, Dai F, Sun G, Keighley E, Indugula SR, Bausserman L, et al. A genome-wide linkage scan identifies multiple chromosomal regions influencing serum lipid levels in the population on the Samoan islands. J Lipid Res. 2008;49:2169–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Minster RL, Hawley NL, Su C-T, Sun G, Kershaw EE, Cheng H, et al. A thrifty variant in CREBRF strongly influences body mass index in Samoans. Nat Genet 2016;48:1049–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kristiansson K, Naukkarinen J, Peltonen L. Isolated populations and complex disease gene identification. Genome Biol 2008;9:109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Laurie CC, Doheny KF, Mirel DB, Pugh EW, Bierut LJ, Bhangale T, et al. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol. 2010;34:591–602.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. G3 (Bethesda). 2011;1:457–70.

    Article  Google Scholar 

  17. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet. 2016;48:1279–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Das S, Abecasis GR, Browning BL. Genotype imputation from large reference panels. Annu Rev Genomics Hum Genet. 2018;19:73–96.

    Article  CAS  PubMed  Google Scholar 

  19. Deka R, Mc Garvey ST, Ferrell RE, Kamboh MI, Yu LM, Aston CE, et al. Genetic characterization of American and Western Samoans. Hum Biol 1994;66:805–22.

    CAS  PubMed  Google Scholar 

  20. McGarvey ST, Levinson PD, Bausser-Man L, Galanis DJ, Hornick CA. Population change in adult obesity and blood lipids in American Samoa from 1976–1978 to 1990. Am J Hum Biol 1993;5:17–30.

    Article  PubMed  Google Scholar 

  21. Chin-Hong PV, McGarvey ST. Lifestyle incongruity and adult blood pressure in Western Samoa. Psychosom Med 1996;58:131–7.

    Article  CAS  PubMed  Google Scholar 

  22. Galanis DJ, McGarvey ST, Quested C, Sio B, Afele-Fa’amuli SA. Dietary intake of modernizing Samoans: implications for risk of cardiovascular disease. J Am Diet Assoc. 1999;99:184–90.

    Article  CAS  PubMed  Google Scholar 

  23. Åberg K, Dai F, Sun G, Keighley ED, Indugula SR, Roberts ST, et al. Susceptibility Loci for Adiposity Phenotypes on 8p, 9p, and 16q in American Samoa and Samoa. Obesity. 2009;17:518–24.

    Article  PubMed  CAS  Google Scholar 

  24. Dai F, Keighley ED, Sun G, Indugula SR, Roberts ST, Åberg K, et al. Genome-wide scan for adiposity-related phenotypes in adults from American Samoa. Int J Obes. 2007;31:1832–42.

    Article  CAS  Google Scholar 

  25. Åberg K, Dai F, Viali S, Tuitele J, Sun G, Indugula SR, et al. Suggestive linkage detected for blood pressure related traits on 2q and 22q in the population on the Samoan islands. BMC Med Genet. 2009;10:107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dai F, Sun G, Åberg K, Keighley ED, Indugula SR, Roberts ST, et al. A whole genome linkage scan identifies multiple chromosomal regions influencing adiposity-related traits among Samoans. Ann Hum Genet. 2008;72:780–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen W-M, Abecasis GR. Family-based association tests for genomewide association scans. Am J Hum Genet. 2007;81:913–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55:997–1004.

    Article  CAS  PubMed  Google Scholar 

  29. Purcell S, Cherny SS, Sham PC. Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003;19:149–50.

    Article  CAS  PubMed  Google Scholar 

  30. Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A novel approach to high-quality postmortem tissue procurement: The GTEx Project. Biopreserv Biobank 2015;13:311–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Segrè AV, Groop L, Mootha VK, Daly MJ, Altshuler D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 2010;6:e1001058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lee PH, O’Dushlaine C, Thomas B, Purcell SM. INRICH: interval-based enrichment analysis for genome-wide association studies. Bioinformatics. 2012;28:1797–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010;466:707–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for genome-wide association analysis. Bioinformatics 2007;23:1294–6.

    Article  CAS  PubMed  Google Scholar 

  35. R Core Team. R: A language and environment for statistical computing. Vienna, Austria, Austria: R Foundation for Statistical Computing; 2017.

    Google Scholar 

  36. Therneau TM, Sinnwell J kinship2: Pedigree functions. R package version 1.6.4; 2014.

  37. Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Magi R, et al. Quality control and conduct of genome-wide association meta-analyses. Nat Protoc. 2014;9:1192–212.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sanna S, Li B, Mulas A, Sidore C, Kang HM, Jackson AU, et al. Fine mapping of five loci associated with low-density lipoprotein cholesterol detects variants that double the explained heritability. PLoS Genet. 2011;7:e1002198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31:3555–7.

  41. Wu J, Yin R-X, Zhou Y-G, Zhang Q-H, Wu J-Z, Chen W-X. Association between the MGAT1 rs634501 polymorphism and serum lipid traits in the Chinese Han and Maonan ethnic groups. Int J Clin Exp Pathol. 2018;11:5923–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Johansson Å, Marroni F, Hayward C, Franklin CS, Kirichenko AV, Jonasson I, et al. Linkage and genome-wide association analysis of obesity-related phenotypes: association of weight with the MGAT1 gene. Obesity 2010;18:803–8.

    Article  CAS  PubMed  Google Scholar 

  43. Jacobsson JA, Rask-Andersen M, Risérus U, Moschonis G, Koumpitski A, Chrousos GP, et al. Genetic variants near the MGAT1 gene are associated with body weight, BMI and fatty acid metabolism among adults and children. Int J Obes. 2012;36:119–29.

    Article  CAS  Google Scholar 

  44. Del-Aguila JL, Beitelshees AL, Cooper-DeHoff RM, Chapman AB, Gums JG, Bailey K, et al. Genome-wide association analyses suggest NELL1 influences adverse metabolic response to HCTZ in African Americans. Pharmacogenomics J. 2014;14:35–40.

    Article  CAS  PubMed  Google Scholar 

  45. Yen C-LE, Stone SJ, Cases S, Zhou P, Farese RV. Identification of a gene encoding MGAT1, a monoacylglycerol acyltransferase. Proc Natl Acad Sci. 2002;99:8512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Turcot V, Lu Y, Highland HM, Schurmann C, Justice AE, Fine RS, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet 2018;50:26–41.

    Article  CAS  PubMed  Google Scholar 

  47. Pellinen T, Ivaska J Integrin traffic. J Cell Sci. 2006;119(Pt 18):3723–31.

  48. Pellinen T, Tuomi S, Arjonen A, Wolf M, Edgren H, Meyer H, et al. Integrin trafficking regulated by Rab21 is necessary for cytokinesis. Dev Cell 2008;15:371–85.

    Article  CAS  PubMed  Google Scholar 

  49. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Samoan participants of the study, local village authorities, and the many Samoan and other field workers over the years. We acknowledge the Samoan Ministry of Health, the Samoa Bureau of Statistics, and the American Samoan Department of Health for their support of this research. We give particular thanks to two research assistants, Melania Selu and Vaimoana Lupematasila, who contributed to the 2010 recruitment and continue to assist us in our work in Samoa. This work was funded by the National Institute of Health grants R01HL093093 (STM), R01HL133040 (RLM), R01AG09375 (STM), R01HL52611 (MI Kamboh), R01DK59642 (STM), and R01DK55406 (RD). Genotyping was performed in the Core Genotyping Laboratory at the University of Cincinnati, funded by National Institutes of Health grant P30ES006096 (SM Ho).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan L. Minster.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Joint Senior Authors: Daniel E. Weeks, Ranjan Deka, Stephen T. McGarvey and Ryan L. Minster

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlson, J.C., Weeks, D.E., Hawley, N.L. et al. Genome-wide association studies in Samoans give insight into the genetic architecture of fasting serum lipid levels. J Hum Genet 66, 111–121 (2021). https://doi.org/10.1038/s10038-020-0816-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-0816-9

This article is cited by

Search

Quick links