Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Autophagy inhibition is the next step in the treatment of glioblastoma patients following the Stupp era

Abstract

It has now been nearly 15 years since the last major advance in the treatment of patients with glioma. “The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity”. Autophagy is primarily a survival pathway, literally self-eating, that is utilized in response to stress (such as radiation and chemotherapy), enabling clearance of effete protein aggregates and multimolecular assemblies. Promising results have been observed in patients with glioma for over a decade now when autophagy inhibition with chloroquine derivatives coupled with conventional therapy. The application of autophagy inhibitors, the role of immune cell-induced autophagy, and the potential role of novel cellular and gene therapies, should now be considered for development as part of this well-established regimen.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  PubMed  Google Scholar 

  2. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Conroy S, Kruyt FA, Joseph JV, Balasubramaniyan V, Bhat KP, Wagemakers M, et al. Subclassification of newly diagnosed glioblastomas through an immunohistochemical approach. PLoS ONE. 2014;9:e115687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Eastman C. et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro-Oncology. 2014;16:896–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Machida Y, Nakagawa M, Matsunaga H, Yamaguchi M, Ogawara Y, Shima Y. et al. A potent blood–brain barrier-permeable mutant IDH1 inhibitor suppresses the growth of glioblastoma with IDH1 mutation in a patient-derived orthotopic Xenograft model. Mol Cancer Ther. 2020;19:375–83. https://doi.org/10.1158/1535-7163.MCT-18-1349.

    Article  CAS  PubMed  Google Scholar 

  7. Wen PY, Cloughesy TF, Olivero AG, Morrissey KM, Wilson TR, Lu X. et al. First-in-human phase I study to evaluate the brain-penetrant PI3K/mTOR inhibitor GDC-0084 in patients with progressive or recurrent high-grade glioma. Clin Cancer Res. 2020;26:1820–8. https://doi.org/10.1158/1078-0432.CCR-19-2808.

    Article  CAS  PubMed  Google Scholar 

  8. Onorati AV, Dyczynski M, Ojha R, Amaravadi RK. Targeting autophagy in cancer. Cancer. 2018;124:3307–18.

    Article  PubMed  Google Scholar 

  9. Amaravadi RK, Kimmelman AC, Debnath J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 2019;9:1167–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haas NB, Appleman LJ, Stein M, Redlinger M, Wilks M, Xu X. et al. Autophagy inhibition to augment mTOR inhibition: a phase I/II trial of everolimus and hydroxychloroquine in patients with previously treated renal cell carcinoma. Clin Cancer Res. 2019;25:2080–7. https://doi.org/10.1158/1078-0432.CCR-18-2204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hruban Z, Spargo B, Swift H, Wissler RW, Kleinfeld RG. Focal cytoplasmic degradation. Am J Pathol. 1963;42:657–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hruban Z, Swift H, Wissler RW. Analog-induced inclusions in pancreatic acinar cells. J Ultrastruct Res. 1962;7:273–85.

    Article  CAS  PubMed  Google Scholar 

  13. Klionsky DJ. Autophagy revisited: a conversation with Christian de Duve. Autophagy. 2008;4:740–3.

    Article  PubMed  Google Scholar 

  14. Xia K, Liu T, Ouyang J, Wang R, Fan T, Zhang M. Genome-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res. 2011;18:363–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sheng R, Qin ZH. History and current status of autophagy research. Adv Exp Med Biol. 2019;1206:3–37.

    Article  CAS  PubMed  Google Scholar 

  16. Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014;24:24–41.

    Article  CAS  PubMed  Google Scholar 

  17. Molina ML, García-Bernal D, Martinez S, Valdor R. Autophagy in the immunosuppressive perivascular microenvironment of glioblastoma. Cancers. 2020;12:102.

    Article  CAS  Google Scholar 

  18. Geng J, Klionsky DJ. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep. 2008;9:859–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol. 2010;190:1005–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van der Vaart A, Griffith J, Reggiori F. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol Biol Cell. 2010;21:2270–84.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yen WL, Shintani T, Nair U, Cao Y, Richardson BC, Li Z, et al. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol. 2010;188:101–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 2001;20:5971–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim J, Huang WP, Stromhaug PE, Klionsky DJ. Convergence of multiple autophagy and cytoplasm to vacuole targeting components to a perivacuolar membrane compartment prior to de novo vesicle formation. J Biol Chem. 2002;277:763–73.

    Article  CAS  PubMed  Google Scholar 

  24. Hou W, Han J, Lu C, Goldstein LA, Rabinowich H. Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy. 2010;6:891–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Han J, Goldstein LA, Hou W, Chatterjee S, Burns TF, Rabinowich H. HSP90 inhibition targets autophagy and induces a CASP9-dependent resistance mechanism in NSCLC. Autophagy. 2018;14:958–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182:685–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci. 2012;69:1125–36.

    Article  CAS  PubMed  Google Scholar 

  28. Roberts P, Moshitch-Moshkovitz S, Kvam E, O’Toole E, Winey M, Goldfarb DS. Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell. 2003;14:129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J, et al. Autophagy mediates degradation of nuclear lamina. Nature. 2015;527:105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Uttenweiler A, Schwarz H, Mayer A. Microautophagic vacuole invagination requires calmodulin in a Ca2+-independent function. J Biol Chem. 2005;280:33289–97.

    Article  CAS  PubMed  Google Scholar 

  31. Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD. The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. J Biol Chem. 2002;277:33105–14.

    Article  CAS  PubMed  Google Scholar 

  32. Muller O, Sattler T, Flotenmeyer M, Schwarz H, Plattner H, Mayer A. Autophagic tubes: vacuolar invaginations involved in lateral membrane sorting and inverse vesicle budding. J Cell Biol. 2000;151:519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sattler T, Mayer A. Cell-free reconstitution of microautophagic vacuole invagination and vesicle formation. J Cell Biol. 2000;151:529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang F, Muller S. Manipulating autophagic processes in autoimmune diseases: a special focus on modulating chaperone-mediated autophagy, an emerging therapeutic target. Front Immunol. 2015;6:252.

    PubMed  PubMed Central  Google Scholar 

  35. Chiang HL, Dice JF. Peptide sequences that target proteins for enhanced degradation during serum withdrawal. J Biol Chem. 1988;263:6797–805.

    Article  CAS  PubMed  Google Scholar 

  36. Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012;22:407–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cuervo AM, Wong E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 2014;24:92–104.

    Article  CAS  PubMed  Google Scholar 

  38. Valdor R, Mocholi E, Botbol Y, Guerrero-Ros I, Chandra D, Koga H, et al. Chaperone-mediated autophagy regulates T cell responses through targeted degradation of negative regulators of T cell activation. Nat Immunol. 2014;15:1046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buchser WJ, Laskow TC, Pavlik PJ, Lin HM, Lotze MT. Cell-mediated autophagy promotes cancer cell survival. Cancer Res. 2012;72:2970–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wojton J, Meisen WH, Kaur B. How to train glioma cells to die: molecular challenges in cell death. J Neuro-Oncol. 2016;126:377–84.

    Article  Google Scholar 

  41. Ulasov IV, Shah N, Kaverina NV, Lee H, Lin B, Lieber A, et al. Tamoxifen improves cytopathic effect of oncolytic adenovirus in primary glioblastoma cells mediated through autophagy. Oncotarget. 2015;6:3977–87.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12:1–222.

    Article  PubMed  PubMed Central  Google Scholar 

  43. He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 2009;43:67–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. J Biol Chem. 1998;273:3963–3966. https://doi.org/10.1074/jbc.273.7.3963.

    Article  CAS  PubMed  Google Scholar 

  45. Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009;136:521–534. https://doi.org/10.1016/j.cell.2008.11.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Long X, Ortiz-Vega S, Lin Y, Avruch J. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J Biol Chem. 2005;280:23433–23436. https://doi.org/10.1074/jbc.C500169200.

    Article  CAS  PubMed  Google Scholar 

  47. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000;150:1507–1513. https://doi.org/10.1083/jcb.150.6.1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20:1992–2003. https://doi.org/10.1091/mbc.e08-12-1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hara T, Takamura A, Kishi C, Iemura SI, Natsume T, Guan JL, et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008;181:497–510. https://doi.org/10.1083/jcb.200712064.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–1991. https://doi.org/10.1091/mbc.e08-12-1248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell. 2002;10:151–162. https://doi.org/10.1016/s1097-2765(02)00568-3.

    Article  CAS  PubMed  Google Scholar 

  52. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003;17:1829–1834. https://doi.org/10.1101/gad.1110003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D. Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol. 2003;5:578–581. https://doi.org/10.1038/ncb999.

    Article  CAS  PubMed  Google Scholar 

  54. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–590. https://doi.org/10.1016/s0092-8674(03)00929-2.

    Article  CAS  PubMed  Google Scholar 

  55. Li Z, Chen B, Wu Y, Jin F, Xia Y, Liu X. Genetic and epigenetic silencing of the beclin 1 gene in sporadic breast tumors. BMC Cancer. 2010;10:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zhang X, Li C, Wang D, Chen Q, Li CL, Li HJ. Aberrant methylation of ATG2B, ATG4D, ATG9A and ATG9B CpG island promoter is associated with decreased mRNA expression in sporadic breast carcinoma. Gene. 2016;590:285–92. https://doi.org/10.1016/j.gene.2016.05.036.

    Article  CAS  PubMed  Google Scholar 

  57. Swiderek E, Kalas W, Wysokinska E, Pawlak A, Rak J, Strzadala L. The interplay between epigenetic silencing, oncogenic KRas and HIF-1 regulatory pathways in control of BNIP3 expression in human colorectal cancer cells. Biochem Biophys Res Commun. 2013;441:707–12.

    Article  CAS  PubMed  Google Scholar 

  58. White E. The role for autophagy in cancer. J Clin Invest. 2015;125:42–6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin-1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003;100:15077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, et al. Cloning and genomic organization of Beclin-1, a candidate tumor suppressor gene on chromosome 17q21. Genomics. 1999;59:59–65.

    Article  CAS  PubMed  Google Scholar 

  61. Wang ZH, Xu L, Duan ZL, Zeng LQ, Yan NH, Peng ZL. Beclin-1-mediated macroautophagy involves regulation of caspase-9 expression in cervical cancer HeLa cells. Gynecol Oncol. 2007;107:107–13.

    Article  CAS  PubMed  Google Scholar 

  62. Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, et al. Protein and mRNA expression of autophagy gene Beclin-1 in human brain tumours. Int J Oncol. 2007;30:429–36.

    CAS  PubMed  Google Scholar 

  63. Yang ZJ, Chee CE, Huang S, Sinicrope FA. The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther. 2011;10:1533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Duran A, Linares JF, Galvez AS, Wikenheiser K, Flores JM, Diaz-Meco MT, et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell. 2008;13:343–54.

    Article  CAS  PubMed  Google Scholar 

  65. Wang X, Wu WKK, Gao J, Li Z, Dong B, Lin X, et al. Autophagy inhibition enhances PD-L1 expression in gastric cancer. J Exp Clin Cancer Res. 2019;38:140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell. 2009;137:1062–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010;190:881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25:717–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006;10:51–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Semenza GL. HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010;20:51–6.

    Article  CAS  PubMed  Google Scholar 

  71. Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011;25:460–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jing Z, Han W, Sui X, Xie J, Pan H. Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Lett. 2015;356 Part B:332–8.

    Article  CAS  PubMed  Google Scholar 

  73. Zhai H, Song B, Xu X, Zhu W, Ju J. Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene. 2013;32:1570–9.

    Article  CAS  PubMed  Google Scholar 

  74. Chan XH, Nama S, Gopal F, Rizk P, Ramasamy S, Sundaram G, et al. Targeting glioma stem cells by functional inhibition of a prosurvival oncomiR-138 in malignant gliomas. Cell Rep. 2012;2:591–602.

    Article  CAS  PubMed  Google Scholar 

  75. Stojcheva N, Schechtmann G, Sass S, Roth P, Florea AM, Stefanski A, et al. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget. 2016;7:12937–50. https://doi.org/10.18632/oncotarget.7346.

  76. Gwak HS, Kim TH, Jo GH, Kim YJ, Kwak HJ, Kim JH, et al. Silencing of microRNA-21 confers radio-sensitivity through inhibition of the PI3K/AKT pathway and enhancing autophagy in malignant glioma cell lines. PLoS ONE. 2012;7:e47449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Palumbo S, Miracco C, Pirtoli L, Comincini S. Emerging roles of microRNA in modulating cell-death processes in malignant glioma. J Cell Physiol. 2014;229:277–86.

    Article  CAS  PubMed  Google Scholar 

  78. Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol. 2019;234:12369–84.

    Article  CAS  PubMed  Google Scholar 

  79. Sette P, Amankulor N, Li A, Marzulli M, Leronni D, Zhang M. et al. GBM-targeted oHSV armed with matrix metalloproteinase 9 enhances anti-tumor activity and animal survival. Mol Ther Oncol. 2019;15:214–22. https://doi.org/10.1016/j.omto.2019.10.005.

    Article  CAS  Google Scholar 

  80. Zhang C, Nance EA, Mastorakos P, Chisholm J, Berry S, Eberhart C. et al. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. J Control Rel. 2017;263:112–119. https://doi.org/10.1016/j.jconrel.2017.03.007.

    Article  CAS  Google Scholar 

  81. Kim DG, Kim KH, Seo YJ, Yang H, Marcusson EG, Son E. et al. Anti-miR delivery strategies to bypass the blood–brain barrier in glioblastoma therapy. Oncotarget. 2016;7:29400–29411. https://doi.org/10.18632/oncotarget.8837.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Khan AA, Betel D, Miller ML, Sander C, Leslie CS, Marks DS. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs [published correction appears. Nat Biotechnol. 2009;27:549–555. https://doi.org/10.1038/nbt.1543.

  83. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. Silence. 2012;3:1. https://doi.org/10.1186/1758-907X-3-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Castanotto D, Sakurai K, Lingeman R, Li H, Shively L, Aagaard L. et al. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res. 2007;35:5154–5164. https://doi.org/10.1093/nar/gkm543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stupp R, Mason WP, Van den bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  86. Jawhari S, Bessette B, Hombourger S, Durand K, Lacroix A, Labrousse F. et al. Autophagy and TrkC/NT-3 signaling joined forces boost the hypoxic glioblastoma cell survival. Carcinogenesis. 2017;38:592–603.

    Article  CAS  PubMed  Google Scholar 

  87. Aoki H, Kondo Y, Aldape K, Yamamoto A, Iwado E, Yokoyama T. et al. Monitoring autophagy in glioblastoma with antibody against isoform B of human microtubule-associated protein 1 light chain 3. Autophagy. 2008;4:467–75.

    Article  CAS  PubMed  Google Scholar 

  88. Furuya D, Tsuji N, Yagihashi A, Watanabe N. Beclin-1 augmented cis-diamminedichloroplatinum induced apoptosis via enhancing caspase-9 activity. Exp Cell Res. 2005;307:26–40.

    Article  CAS  PubMed  Google Scholar 

  89. Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res. 2001;61:439–44.

    CAS  PubMed  Google Scholar 

  90. Pirtoli L, Cevenini G, Tini P, Vannini M, Oliveri G, Marsili S, et al. The prognostic role of Beclin-1 protein expression in high-grade gliomas. Autophagy. 2009;5:930–6.

    Article  PubMed  Google Scholar 

  91. D’Atri S, Tentori L, Lacal PM, Graziani G, Pagani E, Benincasa E, et al. Involvement of the mismatch repair system in temozolomide-induced apoptosis. Mol Pharmacol. 1998;54:334–41.

    Article  PubMed  Google Scholar 

  92. Hirose Y, Berger MS, Pieper RO. p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer Res. 2001;61:1957–63.

    CAS  PubMed  Google Scholar 

  93. Kapadia FN, Bajan KB, Singh S, Mathew B, Nath A, Wadkar S. Changing patterns of airway accidents in intubated ICU patients. Intens Care Med. 2001;27:296–300.

    Article  CAS  Google Scholar 

  94. Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S. Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ. 2004;11:448–57.

    Article  CAS  PubMed  Google Scholar 

  95. Gratas C, Sery Q, Rabe M, Oliver L, Vallette FM. Bak and Mcl-1 are essential for temozolomide induced cell death in human glioma. Oncotarget. 2014;5:2428–35.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Natsumeda M, Aoki H, Miyahara H, Yajima N, Uzuka T, Toyoshima Y, et al. Induction of autophagy in temozolomide treated malignant gliomas. Neuropathology. 2011;31:486–93.

    Article  PubMed  Google Scholar 

  97. Lin CJ, Lee CC, Shih YL, Lin CH, Wang SH, Chen TH, et al. Inhibition of mitochondria- and endoplasmic reticulum stress-mediated autophagy augments temozolomide-induced apoptosis in glioma cells. PLoS ONE. 2012;7:e38706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Knizhnik AV, Roos WP, Nikolova T, Quiros S, Tomaszowski KH, Christmann M, et al. Survival and death strategies in glioma cells: autophagy, senescence and apoptosis triggered by a single type of temozolomide-induced DNA damage. PLoS ONE. 2013;8:e55665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Golden EB, Cho HY, Hofman FM, Louie SG, Schonthal AH, Chen TC. Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurg Focus. 2015;38:E12.

    Article  PubMed  Google Scholar 

  100. Golden EB, Cho HY, Jahanian A, Hofman FM, Louie SG, Schonthal AH, et al. Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg Focus. 2014;37:E12.

    Article  PubMed  Google Scholar 

  101. Lee SW, Kim HK, Lee NH, Yi HY, Kim HS, Hong SH, et al. The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells. Cancer Lett. 2015;360:195–204.

    Article  CAS  PubMed  Google Scholar 

  102. Geng Y, Kohli L, Klocke BJ, Roth KA. Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro Oncol. 2010;12:473–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Sun N, Malide D, Liu J, Rovira II, Combs CA, Finkel T. A fluorescence-based imaging method to measure in vitro and in vivo mitophagy using mt-Keima. Nat Protoc. 2017;12:1576–87.

    Article  CAS  PubMed  Google Scholar 

  104. Um JH, Kim YY, Finkel T, Yun J. Sensitive measurement of mitophagy by flow cytometry using the pH-dependent fluorescent reporter mt-Keima. J Vis Exp. 2018:58099. https://doi.org/10.3791/58099.

  105. Hori YS, Hosoda R, Akiyama Y, Sebori R, Wanibuchi M, Mikami T, et al. Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells. J Neurooncol. 2015;122:11–20.

    Article  CAS  PubMed  Google Scholar 

  106. Eng CH, Wang Z, Tkach D, Toral-Barza L, Ugwonali S, Liu S, et al. Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. Proc Natl Acad Sci USA. 2016;113:182–7.

    Article  CAS  PubMed  Google Scholar 

  107. Sotelo J, Briceno E, Lopez-Gonzalez MA. Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2006;144:337–43.

    Article  CAS  PubMed  Google Scholar 

  108. Rosenfeld MR, Ye X, Supko JG, Desideri S, Grossman SA, Brem S, et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10:1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Sesen J, Dahan P, Scotland SJ, Saland E, Dang VT, Lemarie A. et al. Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response. PLoS ONE. 2015;10:e0123721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Zhang ZS, Wang J, Shen YB, Guo CC, Sai KE, Chen FR, et al. Dihydroartemisinin increases temozolomide efficacy in glioma cells by inducing autophagy. Oncol Lett. 2015;10:379–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bak DH, Kang SH, Choi DR, Gil MN, Yu KS, Jeong JH, et al. Autophagy enhancement contributes to the synergistic effect of vitamin D in temozolomide-based glioblastoma chemotherapy. Exp Ther Med. 2016;11:2153–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gong C, Hu C, Gu F, Xia Q, Yao C, Zhang L, et al. Co-delivery of autophagy inhibitor ATG7 siRNA and docetaxel for breast cancer treatment. J Control Rel. 2017;266:272–86.

    Article  CAS  Google Scholar 

  113. Dyczynski M, Yu Y, Otrocka M, Parpal S, Braga T, Henley AB, et al. Targeting autophagy by small molecule inhibitors of vacuolar protein sorting 34 (Vps34) improves the sensitivity of breast cancer cells to Sunitinib. Cancer Lett 2018;435:32–43.

    Article  CAS  PubMed  Google Scholar 

  114. Pasquier B. SAR405, a PIK3C3/Vps34 inhibitor that prevents autophagy and synergizes with MTOR inhibition in tumor cells. Autophagy 2015;11:725–6. https://doi.org/10.1080/15548627.2015.1033601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Martin KR, Celano SL, Solitro AR, Gunaydin H, Scott M, O’Hagan RC, et al. A potent and selective ULK1 inhibitor suppresses autophagy and sensitizes cancer cells to nutrient. Stress iScience. 2018;8:74–84. https://doi.org/10.1016/j.isci.2018.09.012

    Article  CAS  PubMed  Google Scholar 

  116. Deretic V, Kimura T, Timmins G, Moseley P, Chauhan S, Mandell M. Immunologic manifestations of autophagy. J Clin Invest. 2015;125:75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Jiang YG, Peng Y, Koussougbo KS. Necroptosis: a novel therapeutic target for glioblastoma. Med Hypotheses. 2011;76:350–2.

    Article  PubMed  Google Scholar 

  118. Olive PL, Durand RE. Apoptosis: an indicator of radiosensitivity in vitro? Int J Radiat Biol. 1997;71:695–707.

    Article  CAS  PubMed  Google Scholar 

  119. Shinomiya N. New concepts in radiation-induced apoptosis: ‘premitotic apoptosis’ and ‘postmitotic apoptosis’. J Cell Mol Med. 2001;5:240–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, et al. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer. 2009;125:717–22.

    Article  CAS  PubMed  Google Scholar 

  121. Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol. 2005;26:1401–10.

    CAS  PubMed  Google Scholar 

  122. Yuan X, Du J, Hua S, Zhang H, Gu C, Wang J, et al. Suppression of autophagy augments the radiosensitizing effects of STAT3 inhibition on human glioma cells. Exp Cell Res. 2015;330:267–76.

    Article  CAS  PubMed  Google Scholar 

  123. Jinno-Oue A, Shimizu N, Hamada N, Wada S, Tanaka A, Shinagawa M, et al. Irradiation with carbon ion beams induces apoptosis, autophagy, and cellular senescence in a human glioma-derived cell line. Int J Radiat Oncol Biol Phys. 2010;76:229–41.

    Article  CAS  PubMed  Google Scholar 

  124. Ning S, Knox SJ. G2/M-phase arrest and death by apoptosis of HL60 cells irradiated with exponentially decreasing low-dose-rate gamma radiation. Radiat Res. 1999;151:659–69.

    Article  CAS  PubMed  Google Scholar 

  125. Palumbo S, Comincini S. Autophagy and ionizing radiation in tumors: the “survive or not survive” dilemma. J Cell Physiol. 2013;228:1–8.

    Article  CAS  PubMed  Google Scholar 

  126. Talarico C, Dattilo V, D’antona L, Barone A, Amodio N, Belviso S. et al. SI113, a SGK1 inhibitor, potentiates the effects of radiotherapy, modulates the response to oxidative stress and induces cytotoxic autophagy in human glioblastoma multiforme cells. Oncotarget. 2016;7:15868–84.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Johannessen TC, Hasan-olive MM, Zhu H, Denisova O, Grudic A, Latif MA, et al. Thioridazine inhibits autophagy and sensitizes glioblastoma cells to temozolomide. Int J Cancer. 2019;144:1735–45.

    Article  CAS  PubMed  Google Scholar 

  128. Rebecca VW, Amaravadi RK. Emerging strategies to effectively target autophagy in cancer. Oncogene. 2016;35:1–11.

    Article  CAS  PubMed  Google Scholar 

  129. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funding received from NCI R01 CA181450-on “Pancreatic Ductal Adenocarcinoma is a disease of constitutive autophagy” and a subcontract on DARPA-BAA-14-14; DARPA Big Mechanism Proposal. AIMCancer: Automated Integration of Mechanisms in Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nduka M. Amankulor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Deibert, C.P., Kim, WJ. et al. Autophagy inhibition is the next step in the treatment of glioblastoma patients following the Stupp era. Cancer Gene Ther 28, 971–983 (2021). https://doi.org/10.1038/s41417-020-0205-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-020-0205-8

This article is cited by

Search

Quick links