Skip to main content
Log in

Effect of Oxygen Flow Rate in Zinc Oxide Radio Frequency Magnetron Sputtering on the Structural and Optical Properties of ZnO|PEDOT:PSS Inorganic|Organic Hetero-Junction

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Highly transparent ZnO|PEDOT:PSS inorganic|organic hetero-junction were fabricated using thin (300 nm in thickness) ZnO prepared via radio frequency (RF) magnetron sputtering at different oxygen flow rates ranging from 0 to 20 sccm. The AFM images revealed that the average grain size decreased with increasing oxygen flow rate. In addition, the results of this analysis showed that with an increase in the oxygen flow rate, the average and RMS of surface roughness decreased. The energy gap measured for the zinc oxide layers deposited in the presence of oxygen with flow rates of 0, 5, 10, 15, and 20 sccm remained nearly constant at the value of 3.17 ± 0.01 eV indicating that the energy gap of ZnO layer was relatively independent of the Ar/O2 flow rate. In order to investigate the junction between zinc oxide and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), a 50-nm thick polymeric layer is deposited on a 300-nm zinc oxide layer by spin coating technique. The dark I(V) characteristics indicate that the reverse saturation current density is 2.89 × 10–7, 1.27 × 10–7, 1.96 × 10–7, 3.89 × 10–7, and 4.41 × 10–7 A/cm2 for oxygen flow rates of 0, 5, 10, 15, and 20 sccm, respectively. By increasing the oxygen flow rate, the ideality factor of the resulting Schottky barrier is 2.79, 1.96, 2.32, 2.96, and 3.03. The effective Schottky barrier height of 0.78, 0.8, 0.79, 0.77, and 0.76 eV was obtained for oxygen flow rates of 0, 5, 10, 15, and 20 sccm, respectively. It was found that the highest responsivity and the sensitivity obtained from UV-photocurrent of the nanostructures is for the samples deposited at oxygen flow rates between 5 to 10 sccm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. Shafiei, J. Yu, R. Arsat, K. Kalantar-Zadeh, E. Comini, M. Ferroni, G. Sberveglieri, and W. Wlodarski, Sens. Actuators, B 146, 507 (2010).

    Article  Google Scholar 

  2. L. Fu, Q. Li, M. Wang, C. Song, F. Zeng, and F. Pan, J. Mater. Sci.: Mater. Electron. 29, 3912 (2018).

    Google Scholar 

  3. J. Jayachandiran, A. Raja, M. Arivanandhan, R. Jayavel, and D. Nedumaran, J. Mater. Sci.: Mater. Electron. 29, 3074 (2018).

    Google Scholar 

  4. W. Lu, C. Jiang, D. Caudle, C. Tang, Q. Sun, J. Xu, and J. Song, Phys. Chem. Chem. Phys. 15, 13532 (2013).

    Article  Google Scholar 

  5. A. Arslan, E. Hur, S. Ilican, Y. Caglar, and M. Caglar, Spectrochim. Acta, Part A 128, 716 (2014).

    Article  ADS  Google Scholar 

  6. Y. Zhao, C. H. Li, M. Chen, X. Yu, Y. Chang, A. Chen, H. Zhu, and Z. Tang, Phys. Lett. A 380, 3993 (2016).

    Article  ADS  Google Scholar 

  7. S. Inguva, R. K. Vijayaraghavan, E. McGlynn, and J. P. Mosnier, Superlatt. Microstruct. 101, 8 (2017).

    Article  ADS  Google Scholar 

  8. J. Han, Z. Liu, X. Zheng, K. Guo, X. Zhang, T. Hong, B. Wang, and J. Liu, RSC Adv. 4, 23807 (2014).

  9. N. K. Reddy, M. Devika, and C. W. Tu, RSC Adv. 4, 37563 (2014).

  10. R. Nandi and S. S. Major, Appl. Surf. Sci. 399, 305 (2017).

    Article  ADS  Google Scholar 

  11. J. H. Huang, C. Y. Wang, C. P. Liu, W. H. Chu, and Y. J. Chang, Appl. Phys. A 87, 749 (2007).

    Article  ADS  Google Scholar 

  12. L. J. Brillson and Y. Lu, Appl. Phys. Lett. 109, 121301 (2011).

    Google Scholar 

  13. H. L. Mosbacker, Y. M. Strzhemechny, B. D. White, P. E. Smith, D. C. Look, D. C. Reynolds, C. W. Litton, and L. J. Brillson, Appl. Phys. Lett. 87, 012102 (2005).

    Article  ADS  Google Scholar 

  14. B. Angadi, H. C. Park, H. W. Choi, J. W. Choi, and W. K. Choi, J. Phys. D: Appl. Phys. 40, 1422 (2007).

    Article  ADS  Google Scholar 

  15. S. P. Chang, R. W. Chuang, S. J. Chang, C. Y. Lu, Y. Z. Chiou, and S. F. Hsieh, Thin Solid Films 517, 5050 (2009).

    Article  ADS  Google Scholar 

  16. H. W. Ra, R. Khan, J. T. Kim, B. R. Kang, K. H. Bai, and Y. H. Im, Mater. Lett. 63, 2516 (2009).

    Article  Google Scholar 

  17. C. H. Hsu and Y. D. He, Jpn. J. Appl. Phys. 52, 01AC01 (2013).

    Article  Google Scholar 

  18. H. Zhu, J. Hupkes, E. Bunte, and S. M. Huang, Appl. Surf. Sci. 256, 4601 (2010).

    Article  ADS  Google Scholar 

  19. M. H. Mamat, M. F. Malek, N. N. Hafizah, M. N. Asiah, A. B. Suriani, A. Mohamed, N. Nafarizal, M. K. Ahmad, and M. Rusop, Ceram. Int. 42, 4107 (2016).

    Article  Google Scholar 

  20. M. Nakano, T. Makino, A. Tsukazaki, K. Ueno, A. Ohtomo, T. Fukumura, H. Yuji, S. Akasaka, K. Tamura, K. Nakahara, T. Tanabe, A. Kamisawa, and M. Kawasaki, Appl. Phys. Lett. 93, 351 (2008).

    Article  Google Scholar 

  21. S. Mridha and D. Basak, Appl. Phys. Lett. 92, 142111 (2008).

    Article  ADS  Google Scholar 

  22. S. Ahmad, M. Deepa, and S. Singh, Am. Chem. Soc. 23, 11430 (2007).

    Google Scholar 

  23. B. B. Nasab, A. Kosarian, and N. A. Sheini, Appl. Nanosci. 10, 787 (2020). https://doi.org/10.1007/s13204-019-01160-9

    Article  ADS  Google Scholar 

  24. B. Boroomand Nasab, A. Kosarian, and N. Alaei Sheini, J. Optoelectron. Nanostruct. 4, 33 (2019).

    Google Scholar 

  25. C. H. Ahn, Y. Y. Kim, S. W. Kang, B. H. Kong, S. K. Mohanta, H. K. Cho, J. H. Kim, and H. S. Lee, J. Mater. Sci. Mater. Electron. 19, 744 (2008).

    Article  Google Scholar 

  26. X. C. Wang, X. M. Chen, and B. H. Yang, J. Alloys Compd. 488, 232 (2009).

    Article  Google Scholar 

  27. B. L. Zhu, X. Z. Zhao, F. H. Su, G. H. Li, X. G. Wu, J. Wu, and R. Wu, Vacuum 84, 1280 (2010).

    Article  ADS  Google Scholar 

  28. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).

    Article  ADS  Google Scholar 

  29. E. A. Davis and N. F. Mott, Philos. Mag. 22, 0903 (1970).

  30. S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, Nanoscale 5, 9238 (2013).

    Article  ADS  Google Scholar 

  31. B. K. Sharma, N. Khare, and S. H. Ahmad, Solid State Commun. 149, 771 (2009).

    Article  ADS  Google Scholar 

  32. S. M. Sze and K. K. Ng, Physics of Semiconductor Device, 3rd ed. (Wiley Interscience, New York, 2007).

    Google Scholar 

  33. N. Hernandez-Como, G. Rivas-Montes, F. J. Hernandez-Cuevas, I. Mejia, J. E. Molinar-Solis, and M. Aleman, Mater. Sci. Semicond. Process. 37, 14 (2015).

    Article  Google Scholar 

  34. N. Hernandez-Como, M. Lopez-Castillo, F. J. Hernandez-Cuevas, H. Baez-Medina, R. Baca-Arroyo, and M. Aleman, Microelectron. Eng. 216, 111060 (2019).

    Article  Google Scholar 

  35. G. Kumar, A. Rayerfrancis, B. Bhargav, N. Ahmed, and C. Balaji, Mater. Res. Express 6, 085047 (2019).

    Article  ADS  Google Scholar 

  36. A. Ashery, M. A. Farag, A. E. H. Gaballah, G. Said, and W. A. Arafa, J. Alloys Compd. 723, 276 (2017).

    Article  Google Scholar 

  37. J. S. Wright, R. Khanna, L. F. Voss, L. Stafford, B. P. Gila, D. P. Norton, S. J. Pearton, H. T. Wang, S. Jang, T. Anderson, J. J. Chen, B. S. Kang, F. Ren, H. Shen, J. R. LaRoche, and K. Ip, Appl. Surf. Sci. 253, 3766 (2007).

    Article  ADS  Google Scholar 

  38. T. Tantisantisom, K. Jiramitmonkon, T. Jiemsakul, T. Chodjarusawad, and U. Asawapirom, Adv. Mater. Res. 1131, 157 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kosarian.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boroomand Nasab, B., Kosarian, A. & Sheini, N.A. Effect of Oxygen Flow Rate in Zinc Oxide Radio Frequency Magnetron Sputtering on the Structural and Optical Properties of ZnO|PEDOT:PSS Inorganic|Organic Hetero-Junction. Semiconductors 54, 844–852 (2020). https://doi.org/10.1134/S1063782620080151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620080151

Keywords:

Navigation