Skip to main content
Log in

Hydrodynamic Terahertz Plasmons and Electron Sound in Graphene with Spatial Dispersion

  • XXIV INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 10–13, 2020
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The intrinsic transverse-magnetic modes of graphene with spatial dispersion are investigated theoretically in the hydrodynamic regime in a terahertz frequency range. It is revealed that spatial dispersion is caused by the diffusion electron-transport mechanism due to the spreading of electron-concentration gradients under the effect of pressure in an electron liquid. The cases of a screened and unscreened plasmon as well as electron sound are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. D. A. Bandurin, I. Torre, R. Krishna Kumar, M. Ben Shalom, A. Tomadin, A. Principi, G. H. Auton, E. Khestanova, K. S. Novoselov, I. V. Grigorieva, L. A. Ponomarenko, A. K. Geim, and M. Polini, Science (Washington, DC, U. S.) 351, 1055 (2016).

    Article  ADS  Google Scholar 

  2. R. Krishna Kumar, D. A. Bandurin, F. M. D. Pellegrino, Y. Cao, A. Principi, H. Guo, G. H. Auton, M. Ben Shalom, L. A. Ponomarenko, G. Falkovich, K. Watanabe, T. Taniguchi, I. V. Grigorieva, L. S. Levitov, M. Polini, and A. K. Geim, Nat. Phys. 13, 1182 (2017).

    Article  Google Scholar 

  3. D. Svintsov, Phys. Rev. B 97, 121405(R) (2018).

  4. D. Svintsov, Phys. Rev. B 100, 195428 (2019).

    Article  ADS  Google Scholar 

  5. D. Svintsov, V. Vyurkov, S. Yurchenko, T. Otsuji, and V. Ryzhii, J. Appl. Phys. 111, 083715 (2012).

    Article  ADS  Google Scholar 

  6. A. Lucas and S. Das Sarma, Phys. Rev. B 97, 115449 (2018).

    Article  ADS  Google Scholar 

  7. A. Lucas, Phys. Rev. B 93, 245153 (2016).

    Article  ADS  Google Scholar 

  8. L. A. Falkovsky and A. A. Varlamov, Eur. Phys. J. B 56, 281 (2007).

    Article  ADS  Google Scholar 

  9. L. A. Falkovsky, Phys. Usp. 51, 887 (2008).

    Article  ADS  Google Scholar 

  10. G. W. Hanson, IEEE Trans. Antennas Propag. 56, 747 (2008).

    Article  ADS  Google Scholar 

  11. G. Lovat, G. W. Hanson, R. Araneo, and P. Burghignoli, Phys. Rev. B 87, 115429 (2013).

    Article  ADS  Google Scholar 

  12. J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, IEEE Trans. Antennas Propag. 61, 3589 (2013).

    Article  ADS  Google Scholar 

  13. P. Li, L. J. Jiang, and H. Bağcı, IEEE Trans. Antennas Propag. 66, 3590 (2018).

    Article  ADS  Google Scholar 

  14. D. Correas-Serrano, J. S. Gomez-Diaz, J. Perruisseau-Carrier, and A. Álvarez-Melcoń, IEEE Trans. Microwave Theory Tech. 61, 4333 (2013).

    Article  ADS  Google Scholar 

  15. D. Correas-Serrano, J. S. Gomez-Diaz, and A. Álvarez-Melcoń, IEEE Antennas Wireless Propag. Lett. 13, 345 (2014).

    Article  ADS  Google Scholar 

  16. D. Mencarelli, S. Bellucci, A. Sindon, and L. Pierantoni, J. Phys. D: Appl. Phys. 48, 465104 (2015).

    Article  ADS  Google Scholar 

  17. M. B. Lundeberg, Y. Gao, R. Asgari, C. Tan, B. van Duppen, M. Autore, P. Alonso-González, A. Woessner, K. Watanabe, T. Taniguchi, R. Hillenbrand, J. Hone, M. Polini, and F. H. L. Koppens, Science (Washington, DC, U. S.) 357, 187 (2017).

    Article  ADS  Google Scholar 

  18. F. Rana, IEEE Trans. Nanotechnol. 7, 91 (2008).

    Article  ADS  Google Scholar 

  19. S. Rudin, Int. J. High Speed Electron. Systems 20, 567 (2011).

    Article  ADS  Google Scholar 

  20. M. Jablan, H. Buljan, and M. Soljacic, Phys. Rev. B 80, 245435 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

This work was performed in the framework of the state task and supported in part by the Russian Foundation for Basic Research, project no. 18-37-20004, and “BAZIS” fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Fateev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fateev, D.V., Popov, V.V. Hydrodynamic Terahertz Plasmons and Electron Sound in Graphene with Spatial Dispersion. Semiconductors 54, 941–945 (2020). https://doi.org/10.1134/S1063782620080084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620080084

Keywords:

Navigation