Skip to main content
Log in

Investigation of Core-Shell Nanoparticle in a Confined Space of a Periodic Substrate Based on SERS

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In this paper, surface-enhanced Raman scattering (SERS), a key application of plasmonics, is investigated. Since this technique is based on the interaction of light with nanostructures with proper dimensions and material, finding proper materials and calculating optimized nanostructure dimensions affects its output, greatly. In this report, after a general investigation of this application and modeling of parameters and the efficiency of the usage of core-shell nanoparticles (NPs) instead of pure NPs, regeneration and optimization of a structure based on SERS has been done. It is shown that by replacing pure AuNP with core-shell NP, the SERS enhancement factor was ~2 times greater than in the case of pure gold NP, and absorption cross-section and distribution of electric field was also greatly enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. G. Etchegoin and E. L. Ru, Phys. Chem. Chem. Phys. 10, 6079 (2008).

    Article  Google Scholar 

  2. J. Kneipp, H. Kneipp, and K. Kneipp, Chem. Soc. Rev. 37, 1052 (2008).

    Article  Google Scholar 

  3. D. A. Stuart, C. R. Yonzon, X. Zhang, O. Lyandres, N. C. Shah, M. R. Glucksberg, J. T. Walsh, and R. P. V. Duyne, Anal. Chem. 77, 4013 (2005).

    Article  Google Scholar 

  4. K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, and K. Domen, Nature (London, U. K.) 440 (7082), 295 (2006).

    Article  ADS  Google Scholar 

  5. L. A. Lane, X. Qian, and S. Nie, Chem. Rev. 115, 10489 (2015).

    Article  Google Scholar 

  6. M. Vendrell, K. K. Maiti, K. Dhaliwal, and Y. T. Chang, Trends Biotechnol. 31, 249 (2013).

    Article  Google Scholar 

  7. L. Wu, Z. Wang, S. Zong, H. Chen, C. Wang, S. Xu, and Y. Cui, Analyst 138, 3450 (2013).

    Article  ADS  Google Scholar 

  8. L. E. Jamieson, S. M. Asiala, K. Gracie, K. Faulds, and D. Graham, Ann. Rev. Anal. Chem. 10, 415 (2017).

    Article  Google Scholar 

  9. C. R. Yonzon, O. Lyandres, N. C. Shah, J. A. Dieringer, and R. P. V. Duyne, Surface-Enhanced Raman Scattering (Springer, Berlin, Heidelberg, 2006), p. 367.

    Google Scholar 

  10. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science, New York, 2007), p. 159.

    Book  Google Scholar 

  11. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. V. Duyne, Mater. Today 15, 16 (2012).

    Article  Google Scholar 

  12. M. C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).

    Article  Google Scholar 

  13. F. Tian, J. Conde, C. Bao, Y. Chen, J. Curtin, and D. Cui, Biomaterials 106, 87 (2016).

    Article  Google Scholar 

  14. R. Omar, A. E. Naciri, S. Jradi, Y. Battie, J. Toufaily, H. Mortada, and S. Akil, J. Mater. Chem. C 5, 10813 (2017).

    Article  Google Scholar 

  15. Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, Small 11, 77 (2010).

    Article  Google Scholar 

  16. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, Am. Chem. Soc. 128, 2115 (2006).

    Article  Google Scholar 

  17. W. Wei, Y. Du, L. Zhang, Y. Yang, and Y. Gao, J. Mater. Chem. C 32, 8793 (2018).

    Article  Google Scholar 

  18. S. V. Makarov, I. S. Sinev, V. A. Milichko, F. E. Komissarenko, D. A. Zuev, E. V. Ushakova, I. S. Mukhin, Y. F. Yu, A. I. Kuznetsov, P. A. Belov, I. V. Iorsh, A. N. Poddubny, A. K. Samusev, and Y. S. Kivshar, Nano Lett. 18, 535 (2017).

    Article  ADS  Google Scholar 

  19. D. Lin, Z. Wu, S. Li, W. Zaho, C. Ma, J. Wang, Z. Jiang, Z. Zhong, Y. Zheng, and X. Yang, ACS Nano 11, 1478 (2017).

    Article  Google Scholar 

  20. X. Y. Liu, J. A. Huang, B. Yang, X. J. Zhang, and Y. Y. Zhu, AIP Adv. 5, 057159 (2015).

    Article  ADS  Google Scholar 

  21. W. Cao, L. Jiang, J. Hu, A. Wang, X. Li, and Y. Lu, ACS Appl. Mater. Interfaces 10, 1297 (2017).

    Article  Google Scholar 

  22. Y. Kalachyova, D. Mares, V. Jerabek, K. Zaruba, P. Ulbrich, L. Lapcak, V. Svorcik, and O. Lyutakov, J. Phys. Chem. C 120, 10569 (2016).

    Article  Google Scholar 

  23. M. Xia, P. Zhang, K. Qiao, Y. Bai, and Y. H. Xie, J. Phys. Chem. C 120, 527 (2015).

    Article  Google Scholar 

  24. A. Sakthisabarimoorthi, S. M. B. Dhas, and M. Jose, Mater. Sci. Semicond. Process. 71, 69 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank SERAJ Institute of Higher Education for their support throughout this work. This paper is extracted from a Master of Science thesis in SERAJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Amani.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amani, N., Azizkandi, N.N. Investigation of Core-Shell Nanoparticle in a Confined Space of a Periodic Substrate Based on SERS. Semiconductors 54, 863–868 (2020). https://doi.org/10.1134/S1063782620080047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620080047

Keywords:

Navigation