Skip to main content
Log in

Luminescence of Spatially Ordered Self-Assembled Solitary Ge(Si) Nanoislands and their Groups Incorporated into Photonic Crystals

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The luminescence properties of arrays of spatially ordered self-assembled solitary Ge(Si) nanoislands and their groups, including those embedded in two-dimensional photonic crystals, are studied. It is shown that the incorporation of an array of ordered solitary Ge(Si) islands and their groups into photonic crystals results in an increase in the intensity of their photoluminescence signal at liquid-nitrogen temperature. The maximum increase in the intensity (by a factor of up to ~30) is observed for an ordered array of solitary Ge(Si) islands. The increase in the intensity is attributed to the interaction of emission from islands with photonic-crystal radiative modes. This interaction is more efficient in the case of an array of solitary islands. Due to such interaction the luminescence signal from ordered solitary Ge(Si) islands incorporated into photonic crystals is observed at up to room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. J. Vahala, Nature (London, U.K.) 424, 839 (2003).

    Article  ADS  Google Scholar 

  2. K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama, and S. Noda, Nat. Photon. 8, 406 (2014).

    Article  ADS  Google Scholar 

  3. I. Staude and J. Schilling, Nat. Photon. 11, 274 (2017).

    Article  ADS  Google Scholar 

  4. S. Bidault, M. Mivelle, and N. Bonod, J. Appl. Phys. 126, 094104 (2019).

    Article  ADS  Google Scholar 

  5. A. Vaskin, R. Kolkowski, A. F. Koenderink, and I. Staude, Nanophotonics 8, 1151 (2019).

    Article  Google Scholar 

  6. D. G. Baranov, D. A. Zuev, S. I. Lepeshov, O. V. Kotov, A. E. Krasnok, A. B. Evlyukhin, and B. N. Chichkov, Optica 4, 814 (2017).

    Article  ADS  Google Scholar 

  7. M. Schatzl, F. Hackl, M. Glaser, P. Rauter, M. Brehm, L. Spindlberger, A. Simbula, M. Galli, T. Fromherz, and F. Schäffler, ACS Photon. 4, 665 (2017).

  8. J. P. Leitao, N. M. Santos, N. A. Sobolev, M. R. Correia, N. P. Stepina, M. C. Carmo, S. Magalhaes, E. Alves, A. V. Novikov, M. V. Shaleev, D. N. Lobanov, and Z. F. Krasilnik, Mater. Sci. Eng. B 147, 191 (2008).

    Article  Google Scholar 

  9. D. N. Lobanov, A. V. Novikov, K. E. Kudryavtsev, M. V. Shaleev, D. V. Shengurov, Z. F. Krasilnik, N. D. Zakharov, and P. Werner, Semiconductors 46, 1418 (2012).

    Article  ADS  Google Scholar 

  10. V. G. Talalaev, G. E. Cirlin, A. A. Tonkikh, N. D. Zakharov, P. Werner, U. Gösele, J. W. Tomm, and T. Elsaesser, Nanoscale Res. Lett. 1, 137 (2006).

    Article  ADS  Google Scholar 

  11. Z. F. Krasilnik, A. V. Novikov, D. N. Lobanov, K. E. Kudryavtsev, A. V. Antonov, S. V. Obolenskiy, N. D. Zakharov, and P. Werner, Semicond. Sci. Technol. 26, 014029 (2011).

    Article  ADS  Google Scholar 

  12. M. Brehm and M. Grydlik, Nanotechnology 28, 392001 (2017).

    Article  Google Scholar 

  13. A. N. Yablonskiy, N. A. Baidakova, A. V. Novikov, and D. N. Lobanov, Semiconductors 47, 1496 (2013).

    Article  ADS  Google Scholar 

  14. M. Grydlik, G. Langer, T. Fromherz, F. Schäffler and M. Brehm, Nanotechnology 24, 105601 (2013).

    Article  ADS  Google Scholar 

  15. Zh. V. Smagina, V. A. Zinovyev, G. K. Krivyakin, E. E. Rodyakina, P. A. Kuchinskaya, B. I. Fomin, A. N. Yablonskii, M. V. Stepikhova, A. V. Novikov, and A. V. Dvurechenskii, Semiconductors 52, 1150 (2018).

    Article  ADS  Google Scholar 

  16. Y. Shiraki, X. Xu, J. Xia, T. Tsuboi, and T. Maruizumi, ECS Trans. 45, 235 (2012).

    Article  ADS  Google Scholar 

  17. M. V. Stepikhova, A. V. Novikov, A. N. Yablonskiy, M. V. Shaleev, D. E. Utkin, V. V. Rutckaia, E. V. Skorokhodov, S. M. Sergeev, D. V. Yurasov, and Z. F. Krasilnik, Semicond. Sci. Technol. 34, 024003 (2019).

    Article  ADS  Google Scholar 

  18. Zh. V. Smagina, V. A. Zinovyev, E. E. Rodyakina, B. I. Fomin, M. V. Stepikhova, A. N. Yablonskii, S. A. Gusev, A. V. Novikov, and A. V. Dvurechenskii, Semiconductors 53, 1329 (2019).

    Article  ADS  Google Scholar 

  19. V. Rutckaia, F. Heyroth, A. Novikov, M. Shaleev, M. Petrov, and J. Schilling, Nano Lett. 17, 6886 (2017).

    Article  ADS  Google Scholar 

  20. N. Hauke, S. Lichtmannecker, T. Zabel, F. P. Laussy, A. Laucht, M. Kaniber, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, Phys. Rev. B 84, 085320 (2011).

    Article  ADS  Google Scholar 

  21. Y. Zhang, Ch. Zeng, D. Li, Z. Huang, K. Li, J. Yu, J. Li, X. Xu, T. Maruizumi, and J. Xia, IEEE Photon. J. 5, 4500607 (2013).

    Article  ADS  Google Scholar 

  22. R. Jannesari, M. Schatzl, F. Hackl, M. Glaser, K. Hingerl, T. Fromherz, and F. Schäffler, Opt. Express 22, 25426 (2014).

    Article  ADS  Google Scholar 

  23. Zh. V. Smagina, V. A. Zinovyev, S. A. Rudin, P. L. Novikov, E. E. Rodyakina, and A. V. Dvurechenskii, J. Appl. Phys. 123, 165302 (2018).

    Article  ADS  Google Scholar 

  24. G. Vastola, M. Grydlik, M. Brehm, T. Fromherz, G. Bauer, F. Boioli, L. Miglio, and F. Montalenti, Phys. Rev. B 84, 155415 (2011).

    Article  ADS  Google Scholar 

  25. C. Dais, G. Mussler, H. Sigg, T. Fromherz, V. Auzelyte, H. H. Solak, and D. Grützmacher, Europhys. Lett. 84, 67017 (2008).

    Article  ADS  Google Scholar 

  26. S. A. Rudin, Zh. V. Smagina, V. A. Zinovyev, P. L. Novikov, A. V. Nenashev, E. E. Rodyakina, and A. V. Dvurechenskii, Semiconductors 52, 1457 (2018).

    Article  ADS  Google Scholar 

  27. D. E. Jesson, G. Chen, K. M. Chen, and S. J. Pennycook, Phys. Rev. Lett. 80, 5156 (1998).

    Article  ADS  Google Scholar 

  28. A. V. Novikov, B. A. Andreev, N. V. Vostokov, Yu. N. Drozdov, Z. F. Krasil’nik, D. N. Lobanov, L. D. Moldavskaya, A. N. Yablonskiy, M. Miura, N. Usami, Y. Shiraki, M. Ya. Valakh, N. Mesters, and J. Pascual, Mater. Sci. Eng. B 89, 62 (2002).

    Article  Google Scholar 

  29. Z. Zhong, O. G. Schmidt, and G. Bauer, Appl. Phys. Lett. 87, 133111 (2005).

    Article  ADS  Google Scholar 

  30. J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J. L. Liu, K. L. Wang, X. Z. Liao, and J. Zou, J. Appl. Phys. 90, 4290 (2001).

    Article  ADS  Google Scholar 

  31. N. V. Vostokov, Yu. N. Drozdov, Z. F. Krasil’nik, D. N. Lobanov, A. V. Novikov, and A. N. Yablonskii, JETP Lett. 76, 365 (2002).

    Article  ADS  Google Scholar 

  32. O. G. Schmidt, U. Denker, S. Christiansen, and F. Ernst, Appl. Phys. Lett. 81, 2614 (2002).

    Article  ADS  Google Scholar 

  33. M. Brehm, M. Grydlik, T. Tayagaki, G. Langer, F. Schäffler, and O. G. Schmidt, Nanotechnology 26, 225202 (2015).

    Article  ADS  Google Scholar 

  34. D. Leykam and S. Flach, APL Photon. 3, 070901 (2018).

Download references

ACKNOWLEDGMENTS

We thank V.A. Armbrister for conducting the MBE growth of Ge/Si structures, the Multiple-Access Center “High Technologies and Analytics of Nanosystems”, Novosibirsk State University, and the Multiple-Access Center “Nanostructures”, Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, for placing at our disposal the measuring equipment.

Funding

The part of the study concerned with the formation of structures with quantum dots incorporated into photonic crystals was supported by the Russian Foundation for Basic Research, project nos. 16-29-14031 and 19-42-540002-r_a, and the Government of the Novosibirsk region. The part of the study concerned with luminescence measurements was supported by the Government of the Russian Federation, state order no. 0035-2019-0020, and the Russian Foundation for Basic Research, project no. 18-29-20016-mk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. V. Smagina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smagina, Z.V., Novikov, A.V., Stepikhova, M.V. et al. Luminescence of Spatially Ordered Self-Assembled Solitary Ge(Si) Nanoislands and their Groups Incorporated into Photonic Crystals. Semiconductors 54, 853–859 (2020). https://doi.org/10.1134/S1063782620080230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620080230

Keywords:

Navigation