Skip to main content
Log in

Effective Mass and g-Factor of Two-Dimentional HgTe Γ8-Band Electrons: Shubnikov-de Haas Oscillations

  • XXIV INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 10–13, 2020
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We present a study of Shubnikov–de Haas (SdH) oscillations at temperatures of (2.2–10) K in magnetic fields up to 2.5 T in the HgCdTe/HgTe/HgCdTe heterostructure for a wide (20.3 nm) HgTe quantum well with an inverted energy band structure. The analysis of the temperature dependence of SdH amplitude in weak fields, in a region of doubly degenerate magnetoresistance peaks, led us to the value of effective electron mass mc/m0 = (0.022 ± 0.002) which is about half the theoretical estimates. But in a region of higher magnetic fields, for nondegenerate magnetoresistance peaks, we confidently have mc/m0 = (0.034 ± 0.003) in good agreement both with the theoretical estimation and with our experimental results on the analysis of activation transport under quantum Hall effect regime. The reasons for this discrepancy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. König, H. Buhmann, L. W. Molenkamp, T. Hughes, C.-X. Liu, X.-L. Qi, and S.-C. Zhang, J. Phys. Soc. Jpn. 77, 031007 (2008).

    Article  ADS  Google Scholar 

  2. B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science (Washington, DC, U. S.) 314, 1757 (2006).

    Article  ADS  Google Scholar 

  3. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science (Washington, DC, U. S.) 318, 766 (2007).

    Article  ADS  Google Scholar 

  4. S. S. Krishtopenko, I. Yahniuk, D. B. But, V. I. Gavrilenko, W. Knap, and F. Teppe, Phys. Rev. B 94, 245402 (2016).

    Article  ADS  Google Scholar 

  5. Z. D. Kvon, E. B. Olshanetsky, D. A. Kozlov, N. N. Mikhailov, and S. A. Dvoretskii, JETP Lett. 87, 502 (2008).

    Article  ADS  Google Scholar 

  6. Z. D. Kvon, E. B. Olshanetsky, E. G. Novik, D. A. Kozlov, N. N. Mikhailov, I. O. Parm, and S. A. Dvoretsky, Phys. Rev. B 83, 193304 (2011).

    Article  ADS  Google Scholar 

  7. B. Büttner, C. X. Liu, G. Tkachov, E. G. Novik, C. Brüne, H. Buhmann, E. M. Hankiewicz, P. Recher, B. Trauzettel, S. C. Zhang, and L. W. Molenkamp, Nat. Phys. 7, 418 (2011).

    Article  Google Scholar 

  8. D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, and S. A. Dvoretskii, JETP Lett. 100, 724 (2015).

    Article  ADS  Google Scholar 

  9. D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretskii,  S. Weishäupl,  Y. Krupko,  and J.-C. Portal, Appl. Phys. Lett. 105, 132102 (2014).

    Article  ADS  Google Scholar 

  10. I. M. Tsidilkovski, Electron Spectrum of Gapless Semiconductors (Springer, Berlin, Heidelberg, 1997).

    Book  Google Scholar 

  11. X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  Google Scholar 

  12. B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).

    Article  ADS  Google Scholar 

  13. G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov, and S. A. Dvoretsky, Solid State Commun. 205, 4 (2015).

    Article  Google Scholar 

  14. G. M. Gusev, E. B Olshanetsky, Z. D. Kvon, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. B 87, 081311(R) (2013).

  15. G. M. Gusev, E. B. Olshanetsky, Z. D. Kvon, O. E. Raichev, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. B 88, 195305 (2013).

    Article  ADS  Google Scholar 

  16. E. B. Olshanetsky, Z. D. Kvon, G. M. Gusev, A. D. Levin, O. E. Raichev, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. Lett. 114, 126802 (2015).

    Article  ADS  Google Scholar 

  17. K.-M. Dantscher, D. A. Kozlov, M. T. Scherr, S. Gebert, J. Baerenfaenger, M. V. Durnev, S. A. Tarasenko, V. V. Bel’kov, N. N. Mikhailov, S. A. Dvoretsky, Z. D. Kvon, D. Weiss, and S. D. Ganichev, Phys. Rev. B 95, 201103(R) (2017).

  18. M. Zholudev, F. Teppe, M. Orlita, C. Consejo, J. Torres, N. Dyakonova, M. Czapkiewicz, J. Wróbel, G. Grabecki, N. Mikhailov, S. Dvoretskii, A. Ikonnikov, K. Spirin, V. Aleshkin, V. Gavrilenko, and W. Knap, Phys. Rev. B 86, 205420 (2012).

    Article  ADS  Google Scholar 

  19. G. M. Gusev, E. B. Olshanetsky, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and J. C. Portal, Phys. Rev. Lett 104, 166401 (2010).

    Article  ADS  Google Scholar 

  20. G. M. Minkov, A. V. Germanenko, O. E. Rut, A. A. Sherstobitov, S. A. Dvoretski, and N. N. Mikhailov, Phys. Rev. B 88, 155306 (2013).

    Article  ADS  Google Scholar 

  21. M. V. Yakunin, A. V. Suslov, M. R. Popov, E. G. Novik, S. A. Dvoretsky, and N. N. Mikhailov, Phys. Rev. B 93, 085308 (2016).

    Article  ADS  Google Scholar 

  22. C. Brüne, C. X. Liu, E. G. Novik, E. M. Hankiewicz, H. Buhmann, Y. L. Chen, X. L. Qi, Z. X. Shen, S. C. Zhang, and L. W. Molenkamp, Phys. Rev. Lett. 106, 126803 (2011).

    Article  ADS  Google Scholar 

  23. D. A. Kozlov, Z. D. Kvon, E. B. Olshanetsky, N. N. Mikhailov, S. A. Dvoretsky, and D. Weiss, Phys. Rev. Lett. 112, 196801 (2014).

    Article  ADS  Google Scholar 

  24. M. L. Savchenko, D. A. Kozlov, N. N. Vasilev, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and A. V. Kolesnikov, Phys. Rev. B 99, 195423 (2019).

    Article  ADS  Google Scholar 

  25. B. Davydov and I. Pomeranchuk, J. Phys. 2, 147 (1940).

    Google Scholar 

  26. I. M. Lifshitz and A. M. Kosevich, Sov. Phys. JETP 2, 636 (1956).

    Google Scholar 

  27. I. M. Lifshits and A. M. Kosevich, J. Phys. Chem. Solids 4, 1 (1958).

    Article  ADS  Google Scholar 

  28. E. N. Adams and T. D. Holstein, J. Phys. Chem. Solids 10, 254 (1959).

    Article  ADS  Google Scholar 

  29. A. Isihara and L. Smrčka, J. Phys. C: Solid State Phys. 19, 6777 (1986).

    Article  ADS  Google Scholar 

  30. T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).

    Article  ADS  Google Scholar 

  31. M. G. Vavilov and I. L. Aleiner, Phys. Rev. B 69, 035303 (2004).

    Article  ADS  Google Scholar 

  32. S. G. Novokshonov, unpublished.

  33. E. B. Olshanetsky, S. Sassine, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, J. C. Portal, and A. L. Aseev, JETP Lett. 84, 565 (2006).

    Article  ADS  Google Scholar 

  34. Z. D. Kvon, E. B. Olshanetsky, N. N. Mikhailov, and D. A. Kozlov, Low Temp. Phys. 35, 6 (2009).

    Article  ADS  Google Scholar 

  35. M. V. Yakunin, S. M. Podgornykh, N. N. Mikhailov, and S. A. Dvoretsky, Phys. E (Amsterdam, Neth.) 42, 948 (2010).

  36. V. N. Neverov, A. S. Klepikova, A. S. Bogolubskii, S. V. Gudina, K. V. Turutkin, N. G. Shelushinina, M. V. Yakunin, N. N. Mikhailov, and S. A. Dvoretsky, arXiv: 2002.02283 [cond-mat].

  37. Y. A. Bychkov and E. I. Rasbha, JETP Lett. 39, 78 (1984).

    ADS  Google Scholar 

  38. S. V. Gudina, V. N. Neverov, E. G. Novik, E. V. Ilchenko, G. I. Harus, N. G. Shelushinina, S. M. Podgornykh, M. V. Yakunin, N. N. Mikhailov, and S. A. Dvoretsky, Low Temp. Phys. 43, 605 (2017).

    Article  Google Scholar 

  39. Y. Guldner, C. Rigaux, M. Grynberg, and A. Mycielski, Phys. Rev. B 8, 3875 (1973).

    Article  ADS  Google Scholar 

  40. T. Wimbauer, K. Oettinger, A. L. Efros, B. K. Meyer, and H. Brugger, Phys. Rev. B 50, 8889 (1994).

    Article  ADS  Google Scholar 

  41. M. A. Semina and R. A. Suris, Semiconductors 49, 797 (2015).

    Article  ADS  Google Scholar 

  42. G. M. Minkov, V. Ya. Aleshkin, O. E. Rut, A. A. Sherstobitov, A. V. Germanenko, S. A. Dvoretski, and N. N. Mikhailov, arXiv: 1805.09538 [cond-mat].

  43. Yu. G. Arapov, S. V. Gudina, V. N. Neverov, S. M. Podgornykh, M. R. Popov, G. I. Harus, N. G. Shelushinina, M. V. Yakunin, N. N. Mikhailov, and S. A. Dvoretsky, Semiconductors 49, 1545 (2015).

    Article  ADS  Google Scholar 

  44. Yu. G. Arapov, S. V. Gudina, V. N. Neverov, S. M. Podgornykh, M. R. Popov, G. I. Harus, N. G. Shelushinina, M. V. Yakunin, S. A. Dvoretsky, and N. N. Mikhailov, J. Low Temp. Phys. 185, 665 (2016).

    Article  ADS  Google Scholar 

  45. S. V. Gudina, Yu. G. Arapov, V. N. Neverov, S. M. Podgornykh, M. R. Popov, E. V. Deriushkina, N. G. Shelushinina, M. V. Yakunin, N. N. Mikhailov, and S. A. Dvoretsky, Low Temp. Phys. 45, 412 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Experiments were carried out at the Collaborative Access Center “Testing Center of Nanotechnology and Advanced Materials” of the M.N. Miheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences.

Funding

The research was carried out within the state assignment of Russian Ministry of Science and High education, theme “Electron” and “Function”, supported in part by Russian Foundation on Basic Research, projects Nos. 18-02-00172 (samples), 18-32-00382 (experiment).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Neverov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neverov, V.N., Bogolubskii, A.S., Gudina, S.V. et al. Effective Mass and g-Factor of Two-Dimentional HgTe Γ8-Band Electrons: Shubnikov-de Haas Oscillations. Semiconductors 54, 982–990 (2020). https://doi.org/10.1134/S1063782620080163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620080163

Keywords:

Navigation