Skip to main content
Log in

The Effect of the Crystalline Structure Transformation in VO2|Glass by Inserting TiO2 Buffer Layer and Its Application in Smart Windows

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Vanadium dioxide (VO2) undergoes a reversible metal-insulator transition at low temperature, which has wide range of applications in smart windows and infrared detectors. However, the preparation of VO2 films with controllable phase on glass substrate is still limited. In this paper, it is shown that B-phase can be transformed into M-phase with monoclinic structure by inserting TiO2 buffer layer on glass substrate at low temperature of 400°C. This crystalline transformation might be attributed to that Ti atoms diffuse and form oxygen-deficient environments. Different thicknesses of buffer layers have different effect on characteristic of VO2 film. With 50-nm TiO2 buffer layer, the VO2|TiO2|glass film showed an abrupt resistance change with more than 2.5-order of magnitude across metal–insulator transition, and the visible-light transmittance value is as high as 55.5% with the solar modulation capability up to 8.6%. The current results are very important for the application in smart windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).

    Article  ADS  Google Scholar 

  2. S. R. Popuri, A. Artemenko, and R. Decourt, Phys. Chem. Chem. Phys. 19, 6601 (2017).

    Article  Google Scholar 

  3. J. S. Ke, S. F. Weng, and M. C. Wu, J. Nanopart. Res. 15, 1 (2012).

    Google Scholar 

  4. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, Science (Washington, DC, U. S.) 318 (5857), 1750 (2007).

    Article  ADS  Google Scholar 

  5. D. Hagrman, J. Zubieta, and C. J. Warren, J. Solid State Chem. 138, 178 (1998).

    Article  ADS  Google Scholar 

  6. A. Zylbersztejn and N. F. Mott, Phys. Rev. B 11, 4383 (1975).

    Article  ADS  Google Scholar 

  7. K. D. Rogers, J. A. Coath, and M. C. Lovell, J. Appl. Phys. 70, 1412 (1998).

    Article  ADS  Google Scholar 

  8. G. Stefanovich, A. Pergament, and D. Stefanovich, J. Phys.: Condens. Matter 12, 8837 (2000).

    ADS  Google Scholar 

  9. E. E. Chain, Appl. Opt. 30, 2782 (1991).

    Article  ADS  Google Scholar 

  10. H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, Phys. Rev. B 54, 4621 (1996).

    Article  ADS  Google Scholar 

  11. W. Li, S. Ji, and K. J. Qian, J. Colloid Interface Sci. 456, 166 (2015).

    Article  ADS  Google Scholar 

  12. E. Strelcov, Y. Lilach, and A. Kolmakov, Nano Lett. 9, 2322 (2009).

    Article  ADS  Google Scholar 

  13. S. Ni, H. Zeng, and X. Yang, J. Nanomater. 3, 218 (2011).

    Google Scholar 

  14. K. Chaoyang, Z. Cong, and Z. Liwei, Appl. Surf. Sci. 463, 704 (2019).

    Article  ADS  Google Scholar 

  15. Y. Zhao, C. Chen, and X. Pan, Appl. Surf. Sci. 48, 7138 (2019).

    Google Scholar 

  16. Y. Muraoka and Z. Hiroi, Appl. Phys. Lett. 80, 583 (2002).

    Article  ADS  Google Scholar 

  17. K. Nagashima, T. Yanagida, H. Tanaka, and T. Kawai, J. Appl. Phys. 101, 026103 (2007).

    Article  ADS  Google Scholar 

  18. S. Lee, I. N. Ivanov, and J. K. Keum, Sci. Rep. 60, 73112 (2016).

    Google Scholar 

  19. A. Srivastava, H. Rotella, and S. Saha, Appl. Mater. 3, 489 (2015).

    Google Scholar 

  20. P. Jin, G. Xu, and M. Tazawa, Appl. Phys. A: Mater. 77, 455 (2003).

    Article  ADS  Google Scholar 

  21. J. Bian, M. Wang, and H. Sun, J. Mater. Sci. 51, 6149 (2016).

    Article  ADS  Google Scholar 

  22. J. Jian, X. Wang, and L. Li, ACS Appl. Mater. Int. 9, 5319 (2017).

    Article  Google Scholar 

  23. J. W. Ma, Y. R. Song, and G. Xu, Mech. Mater. 363, 370 (2013).

    Article  Google Scholar 

  24. Z. Zhang, Y. Gao, and L. Kang, J. Phys. Chem. C 114, 22214 (2010).

    Article  Google Scholar 

  25. H. J. Zhou, J. H. Li, and X. Cao, Mater. Res. Innov. 19, S246 (2015).

    Article  Google Scholar 

  26. H. Zong, C. Geng, and C. Zhang, Appl. Surf. Sci. 487, 138 (2019).

    Article  ADS  Google Scholar 

  27. Z. Ding, Y. Cui, and D. Wan, RSC Adv., 729496 (2017).

  28. L. Xu, L. Shi, and X. Li, Appl. Surf. Sci. 255, 3230 (2008).

    Article  ADS  Google Scholar 

  29. Y. Zhang, X. Tan, and C. Huang, Mater. Res. Innov. 19, 295 (2015).

    Article  Google Scholar 

  30. S. Chen, J. Liu, and L. Wang, J. Phys. Chem. C 118, 18938 (2014).

    Article  Google Scholar 

  31. M. Zhou, J. Bao, and M. Tao, Chem. Commun. 49, 6021 (2013).

    Article  Google Scholar 

  32. D. Zhang, K. Yang, and Y. Li, J. Alloys Compd. 684, 719 (2016).

    Article  Google Scholar 

  33. B. Zhu, H. Tao, and X. Zhao, Infrared Phys. Technol. 75, 22 (2016).

    Article  ADS  Google Scholar 

Download references

Funding

This work was sponsored by the Science and Technology Development Project of Henan Province (182102210028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Liu.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Wang, S., Li, R. et al. The Effect of the Crystalline Structure Transformation in VO2|Glass by Inserting TiO2 Buffer Layer and Its Application in Smart Windows. Semiconductors 54, 929–935 (2020). https://doi.org/10.1134/S106378262008014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262008014X

Keywords:

Navigation