Skip to main content
Log in

Electrokinetic Propagation of Acid and Base Fronts in Clayey Soil: An Experimental and Numerical Study

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

This paper presents an experimental and numerical investigation of the electrokinetic propagation of acid or base fronts through clayey soil. The experimental study included measuring the electric current, the mass of water extracted, and the advance of the acid and base fronts in synthetic sediment composed of 25% kaolinite and 75% silt. The results show that the flux rate remains constant over time and that the medium acidifies with time. The numerical model is based on the transport equations and, by considering adsorption and auto-ionization of water, it describes the temporal evolution of pH in the specimen. The experimental evaluation of the adsorption isotherms allows us to calculate the retardation factor, which is 69 and 19.5 for the hydronium and hydroxyl ions, respectively. Given these retardation factors, the results of the numerical model are consistent with experimental results and show how the acid and base fronts evolve in a saturated porous medium. Numerical model results show that electromigration is the major contributor to the migration of ions in the porous medium during electrokinetic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acar, Y.B., Alshawabkeh, A.N.: Electrokinetic remediation. I: pilot-scale tests with lead-spiked kaolinite. J. Geotech. Eng. 122, 173–185 (1996)

    Google Scholar 

  • Al-Hamdan, A.Z., Reddy, K.R.: Electrokinetic remediation modeling incorporating geochemical effects. J. Geotech. Geoenviron. Eng. 134, 91–105 (2008)

    Google Scholar 

  • Alshawabkeh, A.N.: Theoretical and Experimental Modeling of Removing Contaminants From Soils by an Electric Field. Louisiana State University (1994)

  • Alshawabkeh, A.N.: Electrokinetic soil remediation: challenges and opportunities. Sep. Sci. Technol. 44, 2171–2187 (2009)

    Google Scholar 

  • Alshawabkeh, A.N., Acar, Y.B.: Removal of contaminants from soils by electrokinetics: a theoretical treatise. J. Environ. Sci. Health Part A 27, 1835–1861 (1992)

    Google Scholar 

  • Alshawabkeh, A.N., Acar, Y.B.: Electrokinetic remediation. II: theoretical model. J. Geotech. Eng. 122, 186–196 (1996)

    Google Scholar 

  • Alshawabkeh, A.N., Gale, R.J., Ozsu-Acar, E., Bricka, R.M.: Optimization of 2-D electrode configuration for electrokinetic remediation. J. Soil Contam. 8, 617–635 (1999a)

    Google Scholar 

  • Alshawabkeh, A.N., Yeung, A.T., Bricka, M.R.: Practical aspects of in-situ electrokinetic extraction. J. Environ. Eng. 125, 27–35 (1999b)

    Google Scholar 

  • Azzam, R., Oey, W.: The utilization of electrokinetics in geotechnical and environmental engineering. Transp. Porous Med. 42, 293–314 (2001)

    Google Scholar 

  • Baraud, F., Fourcade, M.C., Tellier, S., Astruc, M.: Modelling of decontamination rate in an electrokinetic soil processing. Int. J. Environ. Anal. Chem. 68, 105–121 (1997)

    Google Scholar 

  • Beddiar, K., Fen-Chong, T., Dupas, A., Berthaud, Y., Dangla, P.: Role of pH in electro-osmosis: experimental study on NaCl–water saturated kaolinite. Transp. Porous Med. 61, 93–107 (2005)

    Google Scholar 

  • Benamar, A., Tian, Y., Portet-Koltalo, F., Ammami, M.T., Giusti-Petrucciani, N., Song, Y., Boulangé-Lecomte, C.: Enhanced electrokinetic remediation of multi-contaminated dredged sediments and induced effect on their toxicity. Chemosphere 228, 744–755 (2019)

    Google Scholar 

  • Bourgès-Gastaud, S., Stoltz, G., Sidjui, F., Touze-Foltz, N.: Nonwoven geotextiles to filter clayey sludge: an experimental study. Geotext. Geomembr. 42, 214–223 (2014)

    Google Scholar 

  • Cameselle, C., Reddy, K.R.: Development and enhancement of electro-osmotic flux for the removal of contaminants from soils. Electrochim. Acta 86, 10–22 (2012)

    Google Scholar 

  • Chen, X.: Modeling of experimental adsorption isotherm data. Information 6, 14–22 (2015)

    Google Scholar 

  • COMSOL Multiphysics®, C.: v. 5.3a. www.comsol.com. COMSOL AB, Stockholm, Sweden., 5.3a ed (2018)

  • Dickinson, E.J., Ekström, H., Fontes, E.: COMSOL Multiphysics®: finite element software for electrochemical analysis. A mini-review. Electrochem. Commun. 40, 71–74 (2014)

    Google Scholar 

  • Flora, A., Gargano, S., Lirer, S., Mele, L.: Experimental evidences of the strengthening of dredged sediments by electroosmotic consolidation. Geotech. Geol. Eng. 35, 2879–2890 (2017)

    Google Scholar 

  • Forogo, B.W., Stoltz, G., Touze, N., Bonelli, S.: Influence of sludge composition and ph of the fluid on the electroosmotic permeability coefficient. 12èmes Rencontres Géosynthétiques Nancy (2019)

  • Glendinning, S., Jones, C.J., Lamont-Black, J.: The Use of Electrokinetic Geosynthetics (EKG) to Improve Soft Soils, vol. Elsevier Geo-Engineering Book Series, pp. 997–1043. Elsevier, New York (2005)

    Google Scholar 

  • Hamed, J., Acar, Y.B., Gale, R.J.: Pb(Ii) removal from kaolinite by electrokinetics. J. Geotech. Eng. 117, 241–271 (1991)

    Google Scholar 

  • Han, S.-J., Kim, S.-S., Kim, B.-I.: Electroosmosis and pore pressure development characteristics in lead contaminated soil during electrokinetic remediation. Geosci. J. 8, 85 (2004)

    Google Scholar 

  • Haran, B.S., Popov, B.N., Zheng, G., White, R.E.: Mathematical modeling of hexavalent chromium decontamination from low surface charged soils. J. Hazard. Mater. 55, 93–107 (1997)

    Google Scholar 

  • Huang, Y.T., Shih, M.C.: Effect of linearized expressions of Langmuir equations on the prediction of the adsorption of methylene blue on rice husk. Int. J. Sci. Res. Publ. 6, 549–554 (2016)

    Google Scholar 

  • Jacobs, R.A., Probstein, R.F.: Two-dimensional modeling of electroremediation. AIChE J. 42, 1685–1696 (1996)

    Google Scholar 

  • Kareem, K.A.: Removal and recovery of methylene blue dye from aqueous solution using avena fatua seed husk. Ibn Al-Haitham J. Pure Appl. Sci. 29, 179–194 (2016)

    Google Scholar 

  • Khalid, S., Shahid, M., Niazi, N.K., Murtaza, B., Bibi, I., Dumat, C.: A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 182, 247–268 (2017)

    Google Scholar 

  • Kim, S.-O., Kim, J.-J., Yun, S.-T., Kim, K.-W.: Numerical and experimental studies on cadmium (II) transport in kaolinite clay under electrical fields. Water Air Soil Pollut. 150, 135–162 (2003)

    Google Scholar 

  • Liu, L., Li, W., Song, W., Guo, M.: Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci. Total Environ. 633, 206–219 (2018)

    Google Scholar 

  • Mahmoud, A., Hoadley, A.F.A., Citeau, M., Sorbet, J.M., Olivier, G., Vaxelaire, J., Olivier, J.: A comparative study of electro-dewatering process performance for activated and digested wastewater sludge. Water Res. 129, 66–82 (2018)

    Google Scholar 

  • Malekzadeh, M., Lovisa, J., Sivakugan, N.: An overview of electrokinetic consolidation of soils. Geotech. Geol. Eng. 34, 759–776 (2016)

    Google Scholar 

  • Malusis, M.A., Shackelford, C.D.: Theory for reactive solute transport through clay membrane barriers. J. Contam. Hydrol. 59, 291–316 (2002)

    Google Scholar 

  • Mao, X., Shao, X., Zhang, Z.: Pilot-scale electro-kinetic remediation of lead polluted field sediments: model designation, numerical simulation, and feasibility evaluation. Environ. Sci. Eur. 31, 25 (2019)

    Google Scholar 

  • Masi, M., Ceccarini, A., Iannelli, R.: Multispecies reactive transport modelling of electrokinetic remediation of harbour sediments. J. Hazard. Mater. 326, 187–196 (2017)

    Google Scholar 

  • Masi, M., Paz-Garcia, J.M., Gomez-Lahoz, C., Villen-Guzman, M., Ceccarini, A., Iannelli, R.: Modeling of electrokinetic remediation combining local chemical equilibrium and chemical reaction kinetics. J. Hazard. Mater. 371, 728–733 (2019)

    Google Scholar 

  • Melnyk, T.: Effects of sorption behaviour on contaminant migration. Atomic Energy of Canada Ltd., Pinawa (1985)

    Google Scholar 

  • Mitchell, J.K.: Conduction phenomena: from theory to geotechnical practice. Géotechnique 41, 299–340 (1991)

    Google Scholar 

  • Onsager, L.: Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405–426 (1931a)

    Google Scholar 

  • Onsager, L.: Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 2265 (1931b)

    Google Scholar 

  • Park, J.-S., Kim, S.-O., Kim, K.-W., Kim, B.R., Moon, S.-H.: Numerical analysis for electrokinetic soil processing enhanced by chemical conditioning of the electrode reservoirs. J. Hazard. Mater. 99, 71–88 (2003)

    Google Scholar 

  • Rezaee, M., Asadollahfardi, G.: An implicit finite difference model for electrokinetic remediation of Cd-spiked kaolinite under acid-enhanced and unenhanced conditions. Environ. Model. Assess. 24, 235–248 (2019)

    Google Scholar 

  • Rezaee, M., Asadollahfardi, G., Gomez-Lahoz, C., Villen-Guzman, M., Paz-Garcia, J.M.: Modeling of electrokinetic remediation of Cd- and Pb-contaminated kaolinite. J. Hazard. Mater. 366, 630–635 (2019)

    Google Scholar 

  • Scordia, P.-Y., Lafhaj, Z., Skoczylas, F., Mongeois, F.: Caractérisation et valorization en technique routière de sédiments fluviaux pollués et traités. Eur. J. Environ. Civ. Eng. 12, 1087–1104 (2008)

    Google Scholar 

  • Shackelford, C.D., Daniel, D.E.: Diffusion in saturated soil. II: results for compacted clay. J. Geotech. Eng. 117, 485–506 (1991)

    Google Scholar 

  • Shu, S., Zhu, W., Xu, H., Fan, X., Wang, S.: Numerical parametric study of multiple pollutants transport through compacted clay liner. In: The International Congress on Environmental Geotechnics. Springer, New York, pp. 478–490 (2018)

  • Song, Y., Ammami, M.T., Benamar, A., Mezazigh, S., Wang, H.Q.: Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment. Environ. Sci. Pollut. Res. 23, 10577–10586 (2016)

    Google Scholar 

  • Sprocati, R., Masi, M., Muniruzzaman, M., Rolle, M.: Modeling electrokinetic transport and biogeochemical reactions in porous media: a multidimensional Nernst–Planck–Poisson approach with PHREEQC coupling. Adv. Water Resour. 127, 134–147 (2019)

    Google Scholar 

  • Stillinger, F.H.: Proton transfer reactions and kinetics in water. Theoret. Chem. Adv. Perspect. 3, 177–234 (1978)

    Google Scholar 

  • Subramanyam, B., Das, A.: Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means. J. Environ. Health Sci. Eng. 12, 92 (2014)

    Google Scholar 

  • Villen-Guzman, M., Gomez-Lahoz, C., Garcia-Herruzo, F., Vereda-Alonso, C., Paz-Garcia, J.M., Rodriguez-Maroto, J.M.: Specific energy requirements in electrokinetic remediation. Transp. Porous Med. 121, 585–595 (2018)

    Google Scholar 

  • Wu, M.Z., Reynolds, D.A., Prommer, H., Fourie, A., Thomas, D.G.: Numerical evaluation of voltage gradient constraints on electrokinetic injection of amendments. Adv. Water Resour. 38, 60–69 (2012)

    Google Scholar 

  • Yeung, A.: Coupled flux equations for water, electricity and ionic contaminants through clayey soils under hydraulic, electrical and chemical gradients. J. Non-Equilib. Thermodyn. 15, 247–268 (1990)

    Google Scholar 

  • Yeung, A., Mitchell, J.: Coupled fluid, electrical and chemical fluxes in soil. Geotechnique 43, 121–134 (1993)

    Google Scholar 

  • Yeung, A.T.: Remediation technologies for contaminated sites. Advances in environmental geotechnics, pp. 328–369. Springer, New York (2010)

    Google Scholar 

  • Yeung, A.T., Datla, S.: Fundamental formulation of electrokinetic extraction of contaminants from soil. Can. Geotech. J. 32, 569–583 (1995)

    Google Scholar 

  • Yeung, A.T., Hsu, C.-N., Menon, R.M.: Electrokinetic extraction of lead from kaolinites: i. Numerical modeling. Environmentalist 31, 26–32 (2011)

    Google Scholar 

  • Yeung, A.T., Menon, R.M., Alshawabkeh, A.N.: Discussion and closure: electrokinetic remediation. II: theoretical model. J. Geotech. Geoenviron. Eng. 123, 1078–1081 (1997)

    Google Scholar 

  • Yong, R.N., Warkentin, B.P., Phadungchewit, Y., Galvez, R.: Buffer capacity and lead retention in some clay materials. Water Air Soil Pollut. 53, 53–67 (1990)

    Google Scholar 

  • Zheng, C., Wang, P.P.: MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. Alabama Univ University (1999)

Download references

Acknowledgements

The authors gratefully acknowledge all the members of the consortium “VALSSINNOV” (Antea Group, Inrae, VNF, Vinci terrassement and Afitexinov). The French VALSSINNOV project is supported by BPI France. The VALSSINNOV project aims to develop an innovative and alternative method of onshore management of non-hazardous, non-inert sediments considered as waste that is difficult to recover, thanks to the development, among other things, of active geosynthetics, combining four functions: depollution, filtration, drainage, and reinforcement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banambono Wilfried Forogo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forogo, B.W., Stoltz, G., Touze, N. et al. Electrokinetic Propagation of Acid and Base Fronts in Clayey Soil: An Experimental and Numerical Study. Transp Porous Med 134, 537–563 (2020). https://doi.org/10.1007/s11242-020-01457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01457-2

Keywords

Navigation