Skip to main content
Log in

Cement-Free Refractory Concretes. Part 3. Very Fine Forms of Silica as Effective Refractory Concrete Components

  • SCIENTIFIC RESEARCH AND DEVELOPMENT
  • Published:
Refractories and Industrial Ceramics Aims and scope

Matrix systems of many types of cement-free refractory concretes (CFRC) have a certain content of highly dispersed components of silica composition, i.e., silica sols, SiO2 nanoparticles (in HCBS of different compositions), as well as fine silica (“microsilica” MS). The degree of their dispersion and hydration (lyophilic nature), determined by their specific surface, is considered. It is shown that the dispersion medium of HCBS containing SiO2 is a relatively concentrated silica sol. With respect to hydrophilic and colloidal chemical characteristics, SiO2 nanoparticles in HCBS with comparable dispersion are similar to ordinary silica sols. The advantage of SiO2 nanoparticles in HCBS compared with silica sols is that they are characterized by polydispersion (from 5 – 10 to 100 nm) and purer chemical composition. As a rule silica sols contain 0.2 – 0.4% Na2O. Compared to CFRC based on a silica binder the advantage of using HCBS as a ceramic concrete matrix system is that it contains all components in an optimum ratio, i.e., not only binders in the form of nanoparticles and a micro-filler (as an MS analog) in the form of particles 0.1 – 2.0 μm, but also polydispersed particles (1 – 100 μm) of corundum or high alumina composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. N. A. Shabanova, V. V. Popov, and P. D. Sarkisov, Nano-Dispersed Oxide Chemistry and Technology: Textbook [in Russian], Akademkniga, Moscow (2006).

    Google Scholar 

  2. N. A. Shabanova and P. D. Sarkisov, Bases of Nanodispersed Silica Sol-Gel Technology [in Russian], Akademkniga, Moscow (2004).

    Google Scholar 

  3. Yu. E. Pivinskii, “Nanodispersed silica and same aspects nanotechnologies in the field of silicate science. Part 1,” Refract. Ind. Ceram., 48(6), 408 – 419 (2007).

    Article  CAS  Google Scholar 

  4. Yu. E. Pivinskii, “Nanodispersed silica and same aspects nanotechnologies in the field of silicate science. Part 2,” Refract. Ind. Ceram., 48(6), 435 – 443 (2007).

    Article  CAS  Google Scholar 

  5. Yu. E. Pivinskii, “Nanodispersed silica and same aspects nanotechnologies in the field of silicate science. Part 3,” Refract. Ind. Ceram., 49(1), 38 – 49 (2008).

    Article  CAS  Google Scholar 

  6. Yu. E. Pivinskii, “Nanodispersed silica and same aspects nanotechnologies in the field of silicate science. Part 4,” Refract. Ind. Ceram., 49(1), 67 – 77 (2008).

    Article  CAS  Google Scholar 

  7. R. Ailer, Silica Chemistry [Russian translation], Mir, Moscow (1982).

    Google Scholar 

  8. S. Banerjee, Monolithic Refractories: a Comprehensive Handbook, The American Ceramic Society, World Scientific, Westerville, OH, USA (1998).

    Book  Google Scholar 

  9. D. Park, “Cement-free refractory materials based on a colloidal silica binder,” Novye Ogneupory, No. 9, 36 – 39 (2005).

    Google Scholar 

  10. M. R. Ismael, R. Salomao, and V. C. Pandolfelli, “Optimization of the particle size distribution of colloidal silica containing refractory castables,” Interceram. Refractories Manual, 34 – 39 (2007).

  11. M. R. Ismael, R. D. Anjos, R. Salomao, and V. C. Pandolfelli “Colloidal silica as a nanostructured binder for refractory castables,” Refract. App. News, 11(4), 16 – 20 (2006).

    CAS  Google Scholar 

  12. M. R. Ismael, P. Bonadia, and V. C. Pandolfelli, “Thermo-mechanical properties of colloidal silica containing refractory castables,” Refract. Appl. News, 15(1), 19 – 23 (2010).

    CAS  Google Scholar 

  13. Yu. E. Pivinskii, Ceramic Binders and Ceramic Concretes [in Russian] Metallurgiya, Moscow (1990).

  14. Yu. E. Pivinskii, Ceramic and Refractory Materials: in 2 vol. [in Russian], Stroizdat, St Petersburg (2003).

  15. Yu. E. Pivinskii, Rheology of Dispersed Systems. HCBS and Ceramic Concretes. Elements of Nano-technology in Silicate Materials Science: in 3 vol.[in Russian[, Politekhnika, St Petersburg (2012).

  16. Yu. E. Pivinskii, “Cement-free refractory concretes. Part. 1. General Information. HCBS and ceramic concretes,” Novye Ogneupory, No. 9, 14 – 24 (2019).

  17. Yu. E. Pivinskii, P. V. Dyakin, E. M. Grishpun, and A. M. Gorokhovskii, “Cement-Free Refractory Concretes. Part. 2. High-alumina and Corundum Ceramic Concretes,Novye Ogneupory, No. 11, 39 – 48 (2019).

  18. Yu. E. Pivinskii, “Half-century epoch of domestic quartz ceramics development. Part 1,” Refract. Ind. Ceram., 58(5), 344 – 350 (2017).

    Google Scholar 

  19. Yu. E. Pivinskii, P. V. Dyakin, A. M. Gorokhovskii, and L. V. Ostryakov, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 10. Effect of firing temperature on properties of materials prepared based on mixed composition HCBS from fuzed bauxite-corundum, quartz glass, and reactive alumina,” Refract. Ind. Ceram., 58(2), 227 – 232 (2017).

    Article  CAS  Google Scholar 

  20. Yu. E. Pivinskii, P. V. Dyakin, and A. Yu. Kolobov, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 9. Preparation and properties of mixed HCBS composition: fuzed bauxite-corundum, quartz glass, reactive alumina. Dilatometric study of materials based on them,” Refract. Ind. Ceram., 58(1), 103 – 108 (2017).

    Article  CAS  Google Scholar 

  21. Yu. E. Pivinskii, P. V. Dyakin, and A. Yu. Kolobov, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 8. Effect of firing temperature on properties of materials based on mixed HCBS composition bauxite, quartz glass, and reactive alumina,” Refract. Ind. Ceram., 57(6), 637 – 644 (2017).

    Article  CAS  Google Scholar 

  22. Yu. E. Pivinskii and P. V. Dyakin, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 7. Sintering and secondary mullite formation of material based on composite-composition HCBS during thermal heating and isothermal heating,” Refract. Ind. Ceram., 57(5), 536 – 544 (2016).

    Article  Google Scholar 

  23. I. Allenshtein, et al., Refractory Materials. Structure, Properties, Testing: Handbook [Russian translation] Intermet Inzhineering, Moscow (2010).

  24. Yu. E. Pivinskii, Unmolded Refractories. in 2 vol. Vol. 1. General Questions of Technology [in Russian], Teploenergetik, Moscow (2003).

  25. Yu. E. Pivinskii, “New generation of refractory concretes. Correlation of structure formation and strengthening,” Ogneupory, No. 3, 2 – 8 (1995).

    Google Scholar 

  26. H. Peng, J. Li, and Myhre, “Effect of micro-silica on the properties of corundum-mullite self-sintering ultralow cement refractories,” Elkem (Norway) advertisement (2010).

  27. Yu. E. Pivinskii, “Highly concentrated ceramic binding suspensions (HCBS) and ceramic castables. Stages in research and development,” Refract. Ind. Ceram., 44(3), 152 – 163 (2003).

    Article  CAS  Google Scholar 

  28. Yu. E. Pivinskii and E. I. Suzdal’tsev, Quartz Ceramics and Refractories. Part I. Theoretical Bases and Production Processes [in Russian], Teploenergetik, Moscow (2008).

  29. Yu. E. Pivinskii and E. I. Suzdal’tsev, Quartz Ceramics and Refractories. Part II. Materials, Their Properties, and Fields of Application [in Russian], Teploenergetik, Moscow (2008).

  30. Yu. E. Pivinskii, Quartz Ceramics, HCBS, and Ceramic Concretes. Creation History and Technology Development [in Russian], Politekhnika-Print, St Petersburg (2018).

  31. Yu. E. Pivinskii, F. S. Kaplan, S. G. Semikova, and M. A. Trubitsyn, “Highly concentrated ceramic binding suspensions (HCBS). Colloidal component and binding properties,” Refract., 30(1), 76 – 81 (1989).

    Article  Google Scholar 

  32. Yu. E. Pivinskii and M. A. Trubitsyn, “Highly concentrated ceramic binding suspensions (HCBS). Dispersion medium, stabilization, and binding properties,” Refract., 28(11), 635 – 640 (1987).

    Article  Google Scholar 

  33. Yu. E. Pivinskii, “Highly concentrated ceramic binding suspensions (HCBS). Dispersion composition and porosity of casting,” Refract., 30(3), 214 – 219 (1989).

    Article  Google Scholar 

  34. Yu. E. Pivinskii, Theoretical Aspects of Ceramic and Refractory Technology: Coll. Works, Vol. 1 [in Russian], Storizdat SpB, St. Petersburg (2003).

  35. J. Schnieder, R. Telle, and T. Tonnesen, “Effect of additions on thermomechanical properties of refractory concretes based on a sol-gel binder,” Ogneupory Tekhn. Keram., No. 1/2, 85 – 89 (2013).

  36. M. Ishikawa, “Refractory castables,” Taikabutsu Overseas, 19(3), 7 – 13 (1999).

    Google Scholar 

  37. Yu. E. Pivinskii and D. A. Dobrodon, “Preparation and properties of high-alumina suspensions in the bauxite-quartz glass system,” Novye Ogneupory, No. 5, 19 – 26 (2002).

    Google Scholar 

  38. Yu. E. Pivinskii and P. V. Dyakin, “Efficiency of adding very fine silica in high-alumina and corundum ceramic technology. Part 1,” Refract. Ind. Ceram., 50(1), 43 – 48 (2009).

    Article  CAS  Google Scholar 

  39. Yu. E. Pivinskii and P. V. Dyakin, “Efficiency of adding very fine silica in high-alumina and corundum ceramic technology. Part 2,” Refract. Ind. Ceram., 50(2), 121 – 126 (2009).

    Article  CAS  Google Scholar 

  40. Yu. E. Pivinskii, V. A, Vezv, and P. L. Mityakin, “Basic principles of preparing quartz sand highly concentrated binder suspensions,” Ogneupory, No. 3, 45 – 51 (1979).

    Google Scholar 

  41. Yu. E. Pivinskii, “Study of rheological and binder properties of quartz sand aqueous suspensions,” Ogneupory, No. 6, 39 – 45 (1980).

    Google Scholar 

  42. G. S. Khodakov, Physics of Milling: Monograph [in Russian] Glav. Redakts. Fiz.-Mat. Lit, Nauka, Moscow (1972).

    Google Scholar 

  43. A. P. Luz, M. A. J. Braulio, and V. C. Pandolfelli, Refractory Castable Engineering, Goller Verlag GmbH, Baden-Baden, Germany (2015).

    Google Scholar 

  44. Yu. E. Pivinskii and P. V. Dyakin, “Preparation and properties of corundum HCBS and ceramic concretes. Part 3. Casting and volume constancy of ceramic concretes,” Refract. Ind. Ceram., 51(1), 88 – 94 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Pivinskii.

Additional information

Parts 1 and 2 of the article published in Novye Ogneupory Nos. 9 and 11 (2019).

Translated from Novye Ogneupory, No. 1, pp. 28 – 38, January, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivinskii, Y.E. Cement-Free Refractory Concretes. Part 3. Very Fine Forms of Silica as Effective Refractory Concrete Components. Refract Ind Ceram 61, 31–39 (2020). https://doi.org/10.1007/s11148-020-00427-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-020-00427-x

Keywords

Navigation