Skip to main content
Log in

Experimental isothermal section phase diagram of Ho–Fe–In at 773 K and magnetic properties of Ho12Fe2.08In2.92 alloy

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The isothermal section of the Ho–Fe–In system at 773 K has been constructed by X-ray powder diffraction. One known structure ternary compound Er12Fe2In3-type Ho12Fe2In3 has been confirmed. At the same time, solid solutions are not detected in Ho–Fe–In system at 773 K. The magnetic transition and magnetocaloric effect of Ho12Fe2.08In2.92 alloy with Er12Fe2In3-type structure were investigated by magnetic susceptibility and isothermal magnetization measurements. One normal antiferromagnetic–paramagnetic transition and another abnormal one are discovered at 18 and 76 K in ground state, respectively. Owing to a first-order field-induced metamagnetic transition (antiferromagnetic–ferromagnetic) at/below the Néel temperature of 18 K), the negative entropy changes are observed at corresponding temperature. There is only a second-order ferromagnetic–paramagnetic transition near Curie temperature (TC), the maximum entropy change (\( \Delta S_{ {\rm max} } \)) values are − 6.14 J·kg−1·K−1 at 3 K and 7.88 J·kg−1·K−1 at 28 K in a field range of 0–7 T. The reversible relative cooling power corresponding to negative entropy change can reach about 600 J·kg−1 in an wide operating temperature region \( \Delta T_{\text{cycl}} \) = 74 K from 16 to 90 K, which suggests that Ho12Fe2.08In2.92 could be a potential material for magnetic refrigeration in the corresponding temperature range.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Villars P. Pearson’s Handbook of Crystallographic Data. Materials Park: ASM Internaional; 1997. 1752.

    Google Scholar 

  2. Dzevenko MV, Zarembac RI, Hlukhyy VH, Rodewald UC, Pöttgen R, Kalychak YM. Fe2 pairs as structural units in the indides RE12Fe2In3 (RE = Ho, Er, Tm, Lu). Inorg Chem. 2007;633(506):724.

    CAS  Google Scholar 

  3. Demchyna M, Belan B, Manyako M, Akselrud L, Gagor A, Dzevenko M, Kalychak Y. Phase equilibria in the Dy–Fe–In system and crystal structure of Dy6Fe1.72In. Intermetallics. 2013;37:22.

    Article  CAS  Google Scholar 

  4. Bigun I, Kalychak Ya. Crystal structure of RE12Fe2+xPb3−x (RE = Tm, Lu) compounds. J Alloys Compd. 2010;502(2):300.

    Article  CAS  Google Scholar 

  5. Gulay LD. Investigation of the phase diagrams of the Gd–Ni–Pb and Gd–Cu–Pb systems. J Alloys Compd. 2003;349(1–2):201.

    Article  CAS  Google Scholar 

  6. Kalychak YM. Composition and crystal structure of rare-earths–Co–In compounds. J Alloys Compd. 1999;291(1–2):80.

    Article  CAS  Google Scholar 

  7. Kalychak YM. Peculiarities of the composition and structure of the compounds of the rare-earth-Ni–In system. J Alloys Compd. 1997;262–263:341.

    Article  Google Scholar 

  8. Gladyshevsky RE, Gryn Y, Yarmoliuk YP. Crystal structure of R6Co2Sn (R = Y, Tb, Dy, Ho, Tm, Lu) compounds. Dopov Ukr Acad Sci. 1983;2:67.

    Google Scholar 

  9. Gulay LD, WołÇcyrz M. Crystal structure of R6Co2+xPb1-y (R = Y, Gd, Tb, Dy, Ho, Er, Tm, Lu) and R6Ni2+xPb1-y (R = Tb, Dy, Ho, Er, Tm, Lu) compounds. J Alloys Compd. 2001;315(1–2):164.

    Article  CAS  Google Scholar 

  10. Zaremba VI, Kalychak YM, Dzevenko MV, Rodewald UC, Hoffmann R-D, Pöttgen R. Syntheses and structure of Er6Co2.19(1)In0.81(1). Monatsh Chem. 2007;138(2):101.

    Article  CAS  Google Scholar 

  11. Kolomiets AV, Mudryk Y, Stadnyk Y, Sechovsky V. Crystal structure and magnetic properties of Tb6Co2.35Sn0.65. J Alloys Compd. 2002;333(1–2):34.

    Article  CAS  Google Scholar 

  12. Morozkin AV, Nirmala R, Malik SK. Magnetic and magnetocaloric properties of Ho6Co2Ga-type Dy6Co2.5Sn0.5 compound. J Magn Magn Mater. 2015;378(2):174.

    Article  CAS  Google Scholar 

  13. Canepa F, Napoletano M, Manfrinetti P, Merlo F. Gd6Co2.2In0.8: an intermetallic compound with complex magnetic behaviour. J Alloys Compd. 2002;334(1–2):34.

    Article  CAS  Google Scholar 

  14. Roe GJ, O’Keefe TJ. The Fe–Ho binary system. Metall Trans. 1970;1(9):2565.

    CAS  Google Scholar 

  15. He W, Zhao YH, Zhang YZ, Yu MH, Zeng LM. Isothermal section of the Ho–Co–Fe system at 773 K. J Alloys Compd. 2011;509(3):632.

    Article  CAS  Google Scholar 

  16. Liu FS, Yu YJ, Zhang WH, Li JQ, Ao WQ. Isothermal section of the Ho–Fe–Ga ternary system at 773 K. J Alloys Compd. 2011;509(5):1854.

    Article  CAS  Google Scholar 

  17. Yao QR, Zhou HY, Pan SK, Wang ZM. Experimental study of the isothermal section of the Ho–Fe–Cr system at 873 K. J Alloys Compd. 2011;509(5):1579.

    Article  CAS  Google Scholar 

  18. Zhuang YH, Qin W, Zhou HY. The 500 °C isothermal section of the phase diagram of the ternary Ho–Fe–Nb system. J Alloys Compd. 1997;248(1–2):206.

    Article  CAS  Google Scholar 

  19. Zhang LP, Zhou KW, Wu SW, Zhuang YH. The isothermal section (500 °C) of the phase diagram of the Fe–Ho–V ternary system. J Alloys Compd. 1999;287(1–2):195.

    CAS  Google Scholar 

  20. Nassau K, Cherry LV, Wallace WE. Intermetallic compounds between lanthanons and transition metals of the first long period: I—preparation, existence and structural studies. J Phys Chem Solids. 1960;16(1–2):123.

    Article  CAS  Google Scholar 

  21. Romaka VV, Rogl P, Romaka L, Melnychenko N. Interaction of the components in Dy–Ni–Sn ternary system and crystal structure of new compounds. J Alloys Compd. 2009;485(1–2):275.

    Article  CAS  Google Scholar 

  22. Romaka L, Romaka VV, Stadnyk Yu, Demchenko P. Interaction of the components in the Gd–Ni–Sn ternary system at 770K. J Alloys Compd. 2010;505(1):70.

    Article  CAS  Google Scholar 

  23. Zarembaa RI, Kalychakb YM, Rodewalda UC, Pöttgena R, Zaremba VI. New indides Sc6Co2.18In0.82, Sc10Ni9In19.44 and ScCu4In—synthesis, structure, and crystal chemistry. Cheminform. 2006;37(44):942.

    Article  Google Scholar 

  24. Zhang Q, Cho JH, Li B, Hu WJ, Zhang ZD. Magnetocaloric effect in Ho2In over a wide temperature range. Appl Phys Lett. 2009;94(18):182501.

    Article  Google Scholar 

  25. Singh NK, Suresh KG, Nirmala R, Nigam AK, Malik SK. Effect of magnetic polarons on the magnetic, magnetocaloric, and magnetoresistance properties of intermetallic compound HoNiAl. J Appl Phys. 2007;101(9):093904.

    Article  Google Scholar 

  26. Ouyang ZW, Pecharsky VK, Gschneidner KA Jr, Schlagel DL, Lograsso TA. Magnetic anisotropy and magnetic phase diagram of Gd5Ge4. Phys Rev B. 2006;74(2):024401.

    Article  Google Scholar 

  27. Falkowski M, Kowalczyk A, Toliński T. Magnetic, thermodynamic and transport properties at the first and second order magnetic phase transitions in Dy5Si3 compound. J Magn Magn Mater. 2013;331:144.

    Article  CAS  Google Scholar 

  28. Chen J, Shen BG, Dong QY, Hu FX, Sun JR. Giant reversible magnetocaloric effect in metamagnetic HoCuSi compound. Appl Phys Lett. 2010;96(15):152501.

    Article  Google Scholar 

  29. Hu WJ, Du J, Li B, Zhang Q, Zhang ZD. Giant magnetocaloric effect in the Ising antiferromagnet DySb. Appl Phys Lett. 2008;92(19):192505.

    Article  Google Scholar 

  30. Samanta T, Das I, Banerjee S. Giant magnetocaloric effect in antiferromagnetic ErRu2Si2 compound. Appl Phys Lett. 2007;91(15):152506-3.

    Article  Google Scholar 

  31. Li L, Nishimura K, Yamane H. Giant reversible magnetocaloric effect in antiferromagnetic GdCo2B2 compound. Appl Phys Lett. 2009;94(10):102509.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Department of Science and Technology of Sichuan Province in China (No. 2017JY0181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Ni, C. Experimental isothermal section phase diagram of Ho–Fe–In at 773 K and magnetic properties of Ho12Fe2.08In2.92 alloy. Rare Met. 40, 987–994 (2021). https://doi.org/10.1007/s12598-020-01532-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01532-z

Keywords

Navigation