Skip to main content
Log in

Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Most resistance-type humidity sensors exhibit negative humidity sensitivity, i.e., their resistance decreases with a corresponding increase in humidity. This is primarily attributed to the dominant role of ionic conduction in adsorbed water. In this work, a humidity sensor based on a p-type reduced graphene oxide (p-rGO) with positive humidity sensitivity is proposed. Moreover, its positive humidity sensing response is further enhanced by n-type WS2 nanoparticles modification. The results show that both rGO and rGO/WS2 humidity sensors have good linear response in the relative humidity (RH) range of 0% − 91.5%. The sensitivity of the rGO/WS2 humidity sensor is 1.87 times that of rGO humidity sensor, which is mainly attributed to p–n heterojunction between rGO and WS2. Besides, the rGO/WS2 humidity sensor has small humidity hysteresis (~ 3% RH) and good repeatability. This work demonstrates a humidity sensor based on rGO/WS2 composite film and provides a facile route for fabricating humidity sensor with positive humidity sensing properties.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blank TA, Eksperiandova LP, Belikov KN. Recent trends of ceramic humidity sensors development: a review. Sens Actuators B Chem. 2016;228:416.

    Article  CAS  Google Scholar 

  2. Duan Z, Xu M, Li T, Zhang Y, Zou H. Super-fast response humidity sensor based on La0.7Sr0.3MnO3 nanocrystals prepared by PVP-assisted sol–gel method. Sens Actuators B Chem. 2018;258(5):27.

    Google Scholar 

  3. Zhang D, Xu Z, Yang Z, Song X. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy. 2020;67:104251.

    Article  CAS  Google Scholar 

  4. Zhang D, Tong J, Xia B. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens Actuators B Chem. 2014;197:66.

    Article  CAS  Google Scholar 

  5. Duan Z, Jiang Y, Zhao Q, Wang S, Yuan Z, Zhang Y, Liu B, Tai H. Facile and low-cost fabrication of a humidity sensor using naturally available sepiolite nanofibers. Nanotechnology. 2020;31:355501.

    Article  CAS  Google Scholar 

  6. Duan Z, Zhao Q, Wang S, Huang Q, Yuan Z, Zhang Y, Jiang Y, Tai H. Halloysite nanotubes: Natural, environmental-friendly and low-cost nanomaterials for high-performance humidity sensor. Sens Actuators B Chem. 2020;317:128204.

    Article  CAS  Google Scholar 

  7. Zou H, Zhang Y, Duan Z, Tong Y, Peng J, Zheng X. Humidity sensing properties of LnFeO3 nanofibers synthesized by electrospinning (Ln = Sm, Nd, La). Mater Res Express. 2018;5:015022.

    Article  Google Scholar 

  8. Zhang D, Zong X, Wu Z, Zhang Y. Hierarchical self-assembled SnS2 nanoflower/Zn2SnO4 hollow sphere nanohybrid for humidity-sensing applications. ACS Appl Mater Interfaces. 2018;10(38):32631.

    Article  CAS  Google Scholar 

  9. Zhang D, Wang M, Zhang W, Li Q. Flexible humidity sensing and portable applications based on MoSe2 nanoflowers/copper tungstate nanoparticles. Sens Actuators B Chem. 2020;304:127234.

    Article  CAS  Google Scholar 

  10. Chen M, Xue S, Liu L, Li Z, Wang H, Tan C, Yang J, Hu X, Jiang XF, Cheng Y, Wang H, Xing X, He S. A highly stable optical humidity sensor. Sens Actuators B Chem. 2019;287:329.

    Article  CAS  Google Scholar 

  11. Le X, Wang X, Pang J, Liu Y, Fang B, Xu Z, Gao C, Xu Y, Xie J. A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure. Sens Actuators B Chem. 2018;255:2454.

    Article  CAS  Google Scholar 

  12. Wang S, Xie G, Su Y, Su L, Zhang Q, Du H, Tai H, Jiang Y. Reduced graphene oxide-polyethylene oxide composite films for humidity sensing via quartz crystal microbalance. Sens Actuators B Chem. 2018;255:2203.

    Article  CAS  Google Scholar 

  13. Zhang Y, Ren J, Wu Y, Zhong X, Luo T, Cao J, Yin M, Huang M, Zhang Z. Application of moisture-induced discoloration material nickel(II) iodide in humidity detection. Sens Actuators B Chem. 2020;309:127769.

    Article  CAS  Google Scholar 

  14. Zhang Y, Duan Z, Zou H, Ma M. Drawn a facile sensor: a fast response humidity sensor based on pencil-trace. Sens Actuators B Chem. 2018;261:345.

    Article  CAS  Google Scholar 

  15. Chen Z, Lu C. Humidity sensors: a review of materials and mechanisms. Sens Lett. 2005;3(4):274.

    Article  CAS  Google Scholar 

  16. Shimizu Y, Arai H, Seiyama T. Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors. Sens Actuators B Chem. 1985;7:11.

    Article  CAS  Google Scholar 

  17. Guo L, Xia H, Fan HT, Zhang YL, Chen QD, Zhang T, Sun HB. Femtosecond laser direct patterning of sensing materials toward flexible integration of micronanosensors. Opt Lett. 2010;35(10):1695.

    Article  Google Scholar 

  18. Zhao Q, Yuan Z, Duan Z, Jiang Y, Li X, Li Z, Tai H. An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification. Sens Actuators B Chem. 2019;289:182.

    Article  CAS  Google Scholar 

  19. Wang SB, Hsiao CH, Chang SJ, Lam KT, Wen KH, Young SJ, Hung SC, Huang BR. CuO nanowire-based humidity sensor. IEEE Sens J. 2011;12(6):1884.

    Article  Google Scholar 

  20. Tu HL, Zhao HB, Wei F, Zhang QZ, Fan YY, Du J. Research progress in advanced sensing materials and related devices. Chin J Rare Met. 2019;43(1):1.

    Google Scholar 

  21. Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.

    Article  CAS  Google Scholar 

  22. Zhou BY, Fan SJ, Fan YC, Zheng Q, Zhang X, Jiang W, Wang LJ. Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets. Rare Met. 2019;39(5):513.

    Article  Google Scholar 

  23. He J, Chen Y, Manthiram A. Metal sulfide-decorated carbon sponge as a highly efficient electrocatalyst and absorbant for polysulfide in high-loading Li2S batteries. Adv Energy Mater. 2019;9(20):1900584.

    Article  Google Scholar 

  24. He J, Chen Y, Lv W, Wen K, Wang Z, Zhang W, Li Y, Qin W, He W. Three-dimensional hierarchical reduced graphene oxide/tellurium nanowires: a high-performance freestanding cathode for Li–Te batteries. ACS Nano. 2016;10(9):8837.

    Article  CAS  Google Scholar 

  25. Tai H, Yuan Z, Zheng W, Ye Z, Liu C, Du X. ZnO Nanoparticles/reduced graphene oxide bilayer thin films for improved NH3-sensing performances at room temperature. Nanoscale Res Lett. 2016;11(1):130.

    Article  Google Scholar 

  26. Tai H, Duan Z, He Z, Li X, Xu J, Liu B, Jiang Y. Enhanced ammonia response of Ti3C2Tx nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuators B Chem. 2019;298:126874.

    Article  CAS  Google Scholar 

  27. Zheng W, Xu Y, Zheng L, Yang C, Pinna N, Liu X, Zhang J. MoS2 Van der Waals p-n junctions enabling highly selective room-temperature NO2 sensor. Adv Funct Mater. 2020;30(19):2000435.

    Article  CAS  Google Scholar 

  28. Zhang D, Cao Y, Li P, WuZong JX. Humidity-sensing performance of layer-by-layer self-assembled tungsten disulfide/tin dioxide nanocomposite. Sens Actuators B Chem. 2018;265:529.

    Article  CAS  Google Scholar 

  29. Zhang Y, Zou H, Peng J, Duan Z, Ma M, Xin X, Li W, Zheng X. Enhanced humidity sensing properties of SmFeO3-modified MoS2 nanocomposites based on the synergistic effect. Sens Actuators B Chem. 2018;272:459.

    Article  CAS  Google Scholar 

  30. Zhang D, Sun Y, Li P, Zhang Y. Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl Mater Interfaces. 2016;8(22):14142.

    Article  CAS  Google Scholar 

  31. Duan Z, Zhao Q, Wang S, Yuan Z, Zhang Y, Li X, Wu Y, Jiang Y, Tai H. Novel application of attapulgite on high performance and low-cost humidity sensors. Sens Actuators B Chem. 2020;305:127534.

    Article  CAS  Google Scholar 

  32. Duan Z, Jiang Y, Yan M, Wang S, Yuan Z, Zhao Q, Sun P, Xie G, Du X, Tai H. Facile, flexible, cost-saving, and environment-friendly paper-based humidity sensor for multifunctional applications. ACS Appl Mater Interfaces. 2019;11(24):21840.

    Article  CAS  Google Scholar 

  33. Song Z, Wei Z, Wang B, Luo Z, Xu S, Zhang W, Yu H, Li M, Huang Z, Zang J, Yi F, Liu H. Sensitive room-temperature H2S gas sensors employing SnO2 quantum wire/reduced graphene oxide nanocomposites. Chem Mater. 2016;28(4):1205.

    Article  CAS  Google Scholar 

  34. Jana S, Bera P, Chakraborty B, Mitra BC, Mondal A. Impact of annealing on the electrodeposited WS2 thin films: enhanced photodegradation of coupled semiconductor. Appl Surf Sci. 2014;317:154.

    Article  CAS  Google Scholar 

  35. Park SY, Lee JE, Kim YH, Kim JJ, Shim YS, Kim SY, Lee MH, Jang HW. Room temperature humidity sensors based on rGO/MoS2 hybrid composites synthesized by hydrothermal method. Sens Actuators B Chem. 2018;258:775.

    Article  CAS  Google Scholar 

  36. Zeng Z, Liu N, Zeng Q, Lee SW, Mao WL, Cui Y. In situ measurement of lithiation-induced stress in silicon nanoparticles using micro-Raman spectroscopy. Nano Energy. 2016;22:105.

    Article  CAS  Google Scholar 

  37. Duan Z, Zhang Y, Tong Y, Zou H, Peng J, Zheng X. Mixed-potential-type gas sensors based on Pt/YSZ film/LaFeO3 for detecting NO2. J Electron Mater. 2017;46(12):6895.

    Article  CAS  Google Scholar 

  38. Zhao J, Li N, Yu H, Wei Z, Liao M, Chen P, Wang S, Shi D, Sun Q, Zhang G. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv Mater. 2017;29(34):1702076.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Science Funds for Excellent Young Scholars of China (No. 61822106), the National Science Funds for Creative Research Groups of China (No. 61421002), and the National Natural Science Foundation of China (No. 61671115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Tai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, ZH., Zhao, QN., Li, CZ. et al. Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles. Rare Met. 40, 1762–1767 (2021). https://doi.org/10.1007/s12598-020-01524-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01524-z

Keywords

Navigation