Skip to main content
Log in

MAO‐free copolymerization of ethylene and 1-hexene with Ti (IV) complexes supported by fluorinated 2-hydroxymethylphenol derivatives

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ethylene/1-hexene copolymerization was carried out with a new Ti (IV) complexes stabilized by fluorinated 2-hydroxymethylphenol derivatives and activated by MAO-free binary cocatalysts—{alkyl aluminum chloride + Bu2Mg}. Structures and properties of the obtained copolymers were measured by DSC, GPC and 13C NMR. The effects of the ligand structure and the nature of organoaluminum activator on the polymer yield, comonomer incorporation, polymer composition, molecular weight, polydispersity index and stress–strain behavior have been investigated. The results indicated that the complex with adamantyl substituent was the most active in this series. The obtained copolymer exhibited the highest 1-hexene incorporation content of 18.9 mol%

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Krentsel BA, Kissin YV, Kleiner VJ, Stotskaya LL (1997) Polymers and copolymers of higher alpha-olefins. Carl Hanser Verlag, Munich

    Google Scholar 

  2. Baier MC, Zuideveld MA, Mecking S (2014) Post-Metallocenes in the industrial production of polyolefins. Angew Chem Int Ed 53:9722–9744. https://doi.org/10.1002/anie.201400799

    Article  CAS  Google Scholar 

  3. Solov’ev MV, Gagieva SCh, Tuskaev VA, Bravaya NM, Gadalova OE, Khrustalev VN, Borissova AO, Bulychev BM (2011) Novel titanium(IV) complexes with 2,4-di-tert-butyl-6-(1,1,1,3,3,3hexafluoro2hydroxypropan2yl)phenol in ethene polymerization. Russ Chem Bull 60:2227–2235. https://doi.org/10.1007/s11172-011-0342-1

    Article  CAS  Google Scholar 

  4. Gagieva SCh, Kolosov NA, Kurmaev DA, Fedyanin IV, Tuskaev VA, Bulychev BM (2014) Oligomerization of higher olefins on titanium(+4) and vanadium(+5) coordination compounds with 2-hydroxymethylphenol derivatives. Russ Chem Bull 63:2748–2750. https://doi.org/10.1007/s11172-014-0810-5

    Article  CAS  Google Scholar 

  5. Gagieva SCh, Kurmaev DA, Tuskaev VA, Zubkevich SV, Borissova AO, Fedyanin IV, Bulychev BM (2015) Preparation of linear low-density polyethylene from ethylene by tandem catalysis of titanium(IV) and nickel(II) non-metallocene catalysts. Polyhedron 98:131–136. https://doi.org/10.1016/j.poly.2015.06.024

    Article  CAS  Google Scholar 

  6. Gagieva SCh, Fedyanin IV, Tuskaev VA, Zvukova TM, Bulychev BM (2016) Novel bi- and hexanuclear titanium (IV) complexes: synthesis, structure and catalytic activities in oligo- and polymerization of 1-hexene. J Organomet Chem 802:9–14. https://doi.org/10.1016/j.jorganchem.2015.11.007

    Article  CAS  Google Scholar 

  7. Gagieva SCh, Tuskaev VA, Fedyanin IV, Sizov AI, Mikhaylik ES, Golubev EK, Bulychev BM (2017) Chloride- and alkoxo-titanium(IV) complexes stabilized by 2-hydroxymethylphenol derivative as catalysts for the formation of ultra-high molecular weight polyethylene nascent reactor powders. Polyhedron 122:179–183. https://doi.org/10.1016/j.poly.2016.11.007

    Article  CAS  Google Scholar 

  8. Tuskaev VA, Gagieva SCh, Kurmaev DA, Fedyanin IV, Zubkevich SV, Bulychev BM (2018) New titanium(IV) coordination compounds with 2-hydroxybenzyl alcohol derivatives used in the preparation of ultrahigh molecular weight polyethylene. Russ Chem Bull 67:377–381. https://doi.org/10.1007/s11172-018-2084-9

    Article  CAS  Google Scholar 

  9. Tuskaev VA, Gagieva SCh, Kurmaev DA, Zubkevich SV, Kolosov NA, Golubev EK, Nikiforova GG, Khrustalev VN, Bulychev BM (2018) Novel titanium(IV) complexes stabilized by 2-hydroxybenzyl alcohol derivatives as catalysts for UHMWPE production. J Organomet Chem 867:266–272. https://doi.org/10.1016/j.jorganchem.2017.12.027

    Article  CAS  Google Scholar 

  10. Tuskaev VA, Gagieva SCh, Kurmaev DA, Zubkevich SV, Dorovatovskii PV, Khrustalev VN, Mikhaylik ES, Golubev EK, Buzin MI, Nikiforova GG, Vasil'ev VG, Zvukova TM, Bulychev BM (2019) Novel alkoxo-titanium(IV) complexes with fluorinated 2-hydroxymethylphenol derivatives as catalysts for the formation of ultra-high molecular weight polyethylene nascent reactor powders. Inorg Chim Acta 498:119159. https://doi.org/10.1016/j.ica.2019.119159

    Article  CAS  Google Scholar 

  11. Rishina LA, Galashina NM, Gagieva SCh, Tuskaev VA, Bulychev BM, Belokon YuN, (2008) Homo-and copolymerization of propylene and ethylene in the presence of titanium dichloride complexes with dioxolane dicarboxylate and bis(difurylmethanephenoxyimine) ligands. Polym Sci Ser A 50:110–118. https://doi.org/10.1007/s11498-008-2003-1

  12. Rishina LA, Lalayan SS, Gagieva SCh, Tuskaev VA, Shchegolikhin AN, Shashkin DP, Kissin YV (2014) Titanium complex containing a saligenin ligand - new universal post-metallocene polymerization catalyst: copolymerization of ethylene with higher α-olefins. J Res Updates Polym Sci 3:216–226

    Article  Google Scholar 

  13. Kolosov NA, Tuskaev VA, Gagieva SCh, Fedyanin IV, Khrustalev VN, Polyakova OV, Bulychev BM (2017) Vanadium (V) and titanium (IV) compounds with 2-[hydroxy(diaryl)methyl]-8-hydroxyquinolines: Synthesis, structure and catalytic behaviors to olefin polymerization. Eur Polym J 87:266–276. https://doi.org/10.1016/j.eurpolymj.2016.12.025

    Article  CAS  Google Scholar 

  14. Gao Y, Christianson MD, Wang Y, Chen J, Marshall S, Klosin J, Lohr TL, Marks TJ (2019) Unexpected precatalyst σ-ligand effects in phenoxyimine Zr-catalyzed ethylene/1-octene copolymerizations. J Am Chem Soc 141:7822–7830. https://doi.org/10.1021/jacs.9b01445

    Article  CAS  PubMed  Google Scholar 

  15. Natta G, Porri L, Carbonaro A, Stoppa G (1964) Polymerization of conjugated diolefins by homogeneous aluminum alkyl-titanium alkoxide catalyst systems. I. Cis-1,4 isotactic poly (1,3-pentadiene). Macromol Chem 77:114–125. https://doi.org/10.1002/macp.1964.020770111

    Article  CAS  Google Scholar 

  16. Natta G, Porri L, Carbonaro A (1964) Polymerization of conjugated diolefins by homogeneous aluminum alkyl-titanium alkoxide catalyst systems. II. 1,2-polybutadiene and 3,4-polyisoprene. Macromol Chem 77:126–138. https://doi.org/10.1002/macp.1964.020770112

    Article  CAS  Google Scholar 

  17. Dawes DH, Winkler CA (1964) Polymerization of butadiene in the presence of triethylaluminum and n-butyl titanate. J Polym Sci Part A: Polym Chem 2:3029–3051. https://doi.org/10.1002/pol.1964.100020703

    Article  Google Scholar 

  18. Skupiñska J (1991) Oligomerization of alpha-olefins to higher oligomers. Chem Rev 91:613–648. https://doi.org/10.1021/cr00004a007

    Article  Google Scholar 

  19. Pillai SM, Ravindranathan M, Sivaram S (1986) Dimerization of ethylene and propylene catalyzed by transition-metal complexes. Chem Rev 86:353–399. https://doi.org/10.1021/cr00072a004

    Article  CAS  Google Scholar 

  20. Cazaux JB, Braunstein P, Magna L, Saussine L, Olivier-Bourbigou H (2009) Mono(aryloxido)titanium(iv) complexes and their application in the selective dimerization of ethylene. Eur J Inorg Chem 2009:2942–2950. https://doi.org/10.1002/ejic.200900322

    Article  CAS  Google Scholar 

  21. Suttil JA, McGuinness DS, Pichler M, Gardiner MG, Morgan DH, Evans S (2012) Preparation and structures of aryloxy– and alkoxy–Ti(iv) complexes and their evaluation in ethylene oligomerisation and polymerisation. J Dalton Trans 41:6625–6633. https://doi.org/10.1039/c2dt11737a

    Article  CAS  Google Scholar 

  22. Kissin YV, Rishina LA, Lalayan SS, Krasheninnikov VG (2015) A new route to atactic polypropylene: the second life of premetallocene homogeneous polymerization catalyst. J Polym Sci Part A: Polym Chem 53:2124–2131. https://doi.org/10.1002/pola.27651

    Article  CAS  Google Scholar 

  23. Rishina LA, Kissin YV, Lalayan SS, Krasheninnikov VG, Perepelitsina EO, Medintseva TI (2016) A novel efficient Ti(O-iso-C3H7)4-based olefin polymerization catalyst system. Polym Sci Ser B 58:152–162. https://doi.org/10.1134/S1560090416020056

    Article  CAS  Google Scholar 

  24. Bruker, SAINT v8.34A, 2014

  25. Sheldrick GM (2008) SADABS v2008/1, Bruker/Siemens Area Detector Absorption Correction Program

  26. Sheldrick GM (2015) SHELXT - Integrated space-group and crystal-structure determination. Acta Cryst C71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  27. Nomura K, Oya K (2001) Imanishi Y (2001) Ethylene/α-olefin copolymerization by various nonbridged (cyclopentadienyl)(aryloxy)titanium(IV) complexes — MAO catalyst system. J Mol Cat A: Chem 174:127–140. https://doi.org/10.1016/S1381-1169(01)00196-0

    Article  CAS  Google Scholar 

  28. Kissin YV, Nowlin TE, Mink RI, Brandolini AJ (2000) A new cocatalyst for metallocene complexes in olefin polymerization. Macromolecules 33:4599–4601. https://doi.org/10.1021/ma992047e

    Article  CAS  Google Scholar 

  29. Kissin YV, Mink RI, Brandolini AJ, Nowlin TE (2009) AlR2Cl/MgR2 combinations as universal cocatalysts for Ziegler-Natta, metallocene, and post-metallocene catalysts. J Polym Sci Part A Polym Chem 47:3271–3285. https://doi.org/10.1002/pola.23391

    Article  CAS  Google Scholar 

  30. Li H, Niu Y (2011) Ethylene/α-olefin copolymerization by nonbridged (cyclopentadienyl)(aryloxy) titanium(IV) dichloride/AliBu3/Ph3CB(C6F5)4 catalyst systems. J Appl Polym Sci 121:3085–3092. https://doi.org/10.1002/app.33962

    Article  CAS  Google Scholar 

  31. Hsieh ET, Randall JC (1982) Monomer sequence distributions in ethylene-1-hexene copolymers. Macromolecules 15:1402–1406. https://doi.org/10.1021/ma00233a036

    Article  CAS  Google Scholar 

  32. Randall JC (1989) A review of high resolution liquid 13Carbon nuclear magnetic resonance characterizations of ethylene-based polymers. J Macromol Sci Part C: Polym Rev 29:201–317. https://doi.org/10.1080/07366578908055172

    Article  Google Scholar 

  33. Yu TC (2001) Metallocene plastomer modification of polypropylenes. Polym Engin Sci 41:656–671. https://doi.org/10.1002/pen.10761

    Article  CAS  Google Scholar 

  34. Galimberti M, Piemontesi F, Fusco O, Camurati I, Destro M (1998) Ethene/propene copolymerization with high product of reactivity ratios from a single center, metallocene-based catalytic system. Macromolecules 31:3409–3416. https://doi.org/10.1021/ma9717247

    Article  CAS  Google Scholar 

  35. Ustynyuk LYu, Bulychev BM (2015) DFT modeling of the effect of magnesium dichloride on the catalytic activity of post-titanocene complexes in ethylene polymerization. Mendeleev Commun 25:24–26. https://doi.org/10.1016/j.mencom.2015.01.008

    Article  CAS  Google Scholar 

  36. Ustynyuk LYu, Bulychev BM (2015) Activation effect of metal chlorides in post-metallocene catalytic systems for ethylene polymerization: A DFT study. J Organomet Chem 793:160–170. https://doi.org/10.1016/j.jorganchem.2015.02.035

    Article  CAS  Google Scholar 

  37. Ustynyuk LYu, Bulychev BM (2016) Magnesium dichloride effect in ethylene polymerization reactions: a comparative DFT study of Mg-containing and Mg-free post-titanocene catalytic systems. Mendeleev Commun 26:45–48. https://doi.org/10.1016/j.mencom.2016.01.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Russian Science Foundation (Project No 18–13-00375). NMR and elemental analysis were performed with the financial support from Ministry of Science and Higher Education of the Russian Federation using the equipment of Center for molecular composition studies of INEOS RAS. DSC results were obtained on the equipment of the Educational and Scientific Centre of Functional and Nanomaterials, Moscow Pedagogical State University with the financial support from Ministry of Science and Higher Education of the Russian Federation. NMR studies of the copolymers were supported by the Russian Federation state budget program (Federal Registration AAAA-A16-116053110012–5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav A. Tuskaev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuskaev, V.A., Gagieva, S.C., Kurmaev, D.A. et al. MAO‐free copolymerization of ethylene and 1-hexene with Ti (IV) complexes supported by fluorinated 2-hydroxymethylphenol derivatives. Polym. Bull. 78, 4355–4368 (2021). https://doi.org/10.1007/s00289-020-03322-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03322-0

Keywords

Navigation