Skip to main content
Log in

Effects of pyrolysis upgrading temperature on semi-coke explosibility for blast furnace injection

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The purpose of this work is to understand the semi-coke explosion issues and to improve the safety in semi-coke injection. It shows that the higher pyrolysis upgrading temperature is, the lower explosibility of semi-coke powder has. The effects of pore structure and functional groups on explosive properties are evaluated in detail. The surface area is determined to be at least as important as the volatile matter while the volatile matter content is more than 40.7%. The impact of surface area on explosibility is relatively small while the volatile matter content is less than 31.7%. The explosibility of the sample will show a correlation with combustibility when the comprehensive combustion index is in the range of 7.63 × 10−14–8.62 × 10−14. Content of the oxygen-containing functional groups or the carboxyl and ether bond can all reflect the semi-coke/raw coal explosibility accurately to some degree, and the relative content of carboxyl and ether bond is more closely related to the length of return fire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Guo ZC, Fu ZX. Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China. Energy. 2010;35:4356–60.

    Article  Google Scholar 

  2. Dı́ez MA, Alvarez R, Barriocanal C. Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking. Int J Coal Geol. 2002;50:389–412.

    Article  Google Scholar 

  3. Han S, Chen H, Long RY, Cui XT. Peak coal in China. Resour Conserv Recycl. 2018;129:293–306.

    Article  Google Scholar 

  4. Rao ZH, Zhao YM, Huang CL, Duan CL, He JF. Recent developments in drying and dewatering for low rank coals. Prog Energy Combust Sci. 2015;46:1–11.

    Article  Google Scholar 

  5. Vuthaluru HB, Brooke RJ, Zhang DK, Yan HM. Effects of moisture and coal blending on Hardgrove Grindability Index of Western Australian coal. Fuel Process Technol. 2003;81:67–76.

    Article  CAS  Google Scholar 

  6. Li QZ, Lin BQ, Dai HM, Zhao S. Explosion characteristics of H2/CH4/air and CH4/coal dust/air mixtures. Powder Technol. 2012;229:222–8.

    Article  CAS  Google Scholar 

  7. Joseph G. CSB Hazard Investigation Team. Combustible dusts: a serious industrial hazard. J Hazard Mater. 2007;142:589–91.

    Article  CAS  PubMed  Google Scholar 

  8. Yuan CM, Li C, Li G. Coal dust explosion prevention and protection based on inherent safety. Procedia Eng. 2011;26:26.

    Google Scholar 

  9. Liu QM, Bai CH, Li XD, Jiang L, Dai WX. Coal dust/air explosions in a large-scale tube. Fuel. 2010;2010:329–35.

    Article  Google Scholar 

  10. Wang GW, Zhang JL, Zhang GH, et al. Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends. Energy. 2017;131:27–40.

    Article  CAS  Google Scholar 

  11. Yan W, Gu F. An experimental study on explosive properties of bituminous coal powder for blast furnace injection. Iron Steel. 1981;16:7–12.

    CAS  Google Scholar 

  12. Li ZT, Chen HB, Wang Y. Study on explosion and influence factors of low-rank injection coal. Coal Sci Technol. 2016;9:48–53.

    Google Scholar 

  13. Moroń W, Ferens W, Czajka KM. Explosion of different ranks coal dust in oxy-fuel atmosphere. Fuel Process Technol. 2016;148:388–94.

    Article  Google Scholar 

  14. Gao QJ, He GF, Yang FC. Fundamental of explosibility of pulverized coal injection and suppressed measures. Iron Steel. 2018;53:24–9.

    Google Scholar 

  15. Wang YJ, Wang K, Kang YC. Study on the explosive characteristics of coal seed in coal-fired power plants. Boiler Technol. 2019;50:61–8.

    Google Scholar 

  16. Song TF, Zhang JL, Wang GW, Wang HY, Xu RS. Influencing factors of the explosion characteristics of modified coal used for blast furnace injection. Powder Technol. 2019;353:171–7.

    Article  CAS  Google Scholar 

  17. Jin LZ, Jin YH, Zhang JY. Experimental study on lower explosion limit and length of return fire when blasting luan barren coal into blast furnace. China Saf Sci J. 2005;15:61–4.

    Google Scholar 

  18. Du G, Ying ZW. Effect of preheating on explosibility of mixed pulverized coal. China Met. 2007;06:9–12.

    Google Scholar 

  19. Xie KC. Coal structure and its reactivity. 1st ed. Beijing: Science Press; 2002.

    Google Scholar 

  20. Zhang YY, Nakano J, Liu LL, et al. Co-combustion and emission characteristics of coal gangue and low-quality coal. J Therm Anal Calorim. 2015;120:1883–92.

    Article  CAS  Google Scholar 

  21. Sun H, Pan Y, Guan J, et al. Thermal decomposition behaviors and dust explosion characteristics of nano-polystyrene. J Therm Anal Calorim. 2019;135:2359–66.

    Article  CAS  Google Scholar 

  22. Zhang SS, Liu ZT, Gao QQ. Study on relationship between coal dust explosion volatile. Coal Technol. 2015;34:131–3.

    Google Scholar 

  23. Li ZJ, Zheng WY. Selection on high volatile bituminous coal type for high proportioning injection in Xinjiang Regio. Met Mine. 2014;11:61–7.

    Google Scholar 

  24. Petersen HI, Rosenberg P, Nytoft HP. Oxygen groups in coals and alginite-rich kerogen revisited. Int J Coal Geol. 2008;74:93–113.

    Article  CAS  Google Scholar 

  25. Ibarra J, Munoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process. Org Geochem. 1996;24:725–35.

    Article  CAS  Google Scholar 

  26. Zodrow EL, Mastalerz M, Werner ZU. Medullosalean fusain trunk from the roof rocks of a coal seam: insight from FTIR and NMR (Pennsylvanian Sydney coalfield, Canada). Int J Coal Geol. 2010;82:116–24.

    Article  CAS  Google Scholar 

  27. Song HJ, Liu GR, Zhang JZ, Wu JH. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method. Fuel Process Techonl. 2017;15:454–60.

    Article  Google Scholar 

  28. Li QZ, Lin BQ, Zhao CS, Wu WF. Chemical structure analysis of coal char surface based on Fourier-Transform Infrared Spectormeter. Proc CSEE. 2011;31:46–52.

    Google Scholar 

  29. Kocsis L, Herman P, Eke A. The modified Beer–Lambert law revisited. Phys Med Biol. 2006;5:91–8.

    Article  Google Scholar 

  30. Tiit K, Merli K, Andres T, Vilma P. TG-FTIR/MS analysis of thermal and kinetic characteristics of some coal samples. J Therm Anal Calorim. 2013;113:1063–71.

    Article  Google Scholar 

  31. Gao W, Mogi T, Sun J, Dobashi R. Effects of particle thermal characteristics on flame structures during dust explosions of three long-chain monobasic alcohols in an open-space chamber. Fuel. 2013;113:86–96.

    Article  CAS  Google Scholar 

  32. Wang CA, Zhao L, Yuan MB, et al. Effects of minerals containing sodium, calcium, and iron on oxy-fuel combustion reactivity and kinetics of Zhundong coal via synthetic coal. J Therm Anal Calorim. 2020;139:261–71.

    Article  CAS  Google Scholar 

  33. Li XG, Lv Y, Ma BG, Jian SW, Tan HB. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Bioresour Technol. 2011;102:9783–8.

    Article  CAS  PubMed  Google Scholar 

  34. Chen DD, Bu CS, Wang XY, et al. Gasification and combustion kinetics of a high-ash-fusion-temperature coal using thermogravimetric analysis. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09460-x.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation for Young Scientists of China (No. 51804026) and the Fundamental Research Funds for the Central Universities (FRF-AT-18-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, X., Huang, C., Wang, G. et al. Effects of pyrolysis upgrading temperature on semi-coke explosibility for blast furnace injection. J Therm Anal Calorim 146, 1039–1048 (2021). https://doi.org/10.1007/s10973-020-10137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10137-8

Keywords

Navigation