Skip to main content
Log in

Thermal performance in transient MHD thermogravitational convection of nanofluid with various heating effects

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work presents numerical simulation of two-dimensional thermogravitational energy transport in a chamber filled with copper–water (\({\hbox {Cu-H}}_\mathrm{2} \hbox {O}\)) nanoliquid under the uniform magnetic impact. In this study, our aim is to analyze the characteristic role of nanoliquid thermal conductivity under the influence of various thermal boundary conditions with constant magnetic effect. The mathematical model of the flow physics consists of the Navier–Stokes (N–S) equations written using streamfunction–vorticity (\(\psi\)--\(\zeta\)) variables including the energy transport equation. The governing equations are solved by using a higher-order compact scheme based on finite difference method. The impact of key characteristics including nanoliquid volume fraction (\(0\le \phi \le 0.04\)), Rayleigh number (\(10^{4}\le {\hbox {Ra}}\le 10^{6}\)), Hartmann number (\(0\le {\hbox {Ha}}\le 60\)) and amplitude of heating (\(0\le I \le 1\)) is analyzed in detail. It is found that the energy transport augmentation occurs with nonuniform heating over uniform heating and the rate of thermal transmission rises with a growth of \({\hbox {Ra}}\) and \(\phi\) but it decreases with the growth of \({\hbox {Ha}}\) number. In addition, the transient structures are very useful for understanding the thermo- and magnetohydrodynamic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\(B_0\) :

Magnetic field strength (\({\hbox {Amp m}}^{-1}\))

\(C_\mathrm{p}\) :

Specific heat (\({\hbox {J kg}}^{-1} {\hbox {K}}^{-1}\))

g :

Gravitational acceleration (\({\hbox {m s}}^{-2}\))

\({\hbox {Ha}}\) :

Hartmann number (\(B_0L\sqrt{\sigma _\mathrm{nf}/\rho _\mathrm{nf}\nu _{\rm f}}\))

I :

Dimensionless amplitude of heating

k :

Thermal conductivity (\({\hbox {W m}}^{-1} {\hbox {K}}^{-1}\))

L :

Length of the side of a square cavity (m)

\({\hbox {Nu}}\) :

Nusselt number

p :

Dimensional pressure (\({\hbox {N m}}^{-2}\))

P :

Dimensionless pressure

\({\hbox {Pr}}\) :

Prandtl number

\({\hbox {Ra}}\) :

Rayleigh number

t :

Dimensional time

\(T_\mathrm{h}\) :

Temperature of hot bottom wall (K)

\(T_\mathrm{c}\) :

Temperature of cold vertical wall (K)

UV :

Dimensionless velocities in XY directions, respectively

XY :

Dimensionless Cartesian coordinates

\(\xi\), \(\eta\) :

Dimensionless coordinate in computational plane

\(\nu\) :

Kinematic viscosity (\({\hbox {m}}^{2}\,{\hbox {s}}^{-1}\))

\(\rho\) :

Density (kg \({\hbox {m}}^{-3}\))

\(\mu\) :

Dynamic viscosity (Pa s)

\(\alpha\) :

Thermal diffusivity (\({\hbox {m}}^{2}\,{\hbox {s}}^{-1})\)

\(\beta\) :

Thermal expansion coefficient (\({\hbox {K}}^{-1}\))

\(\gamma\) :

Frequency of the temperature oscillation

\(\sigma\) :

Electrical conductivity (\(\upmu {\hbox {S cm}}^{-1}\))

\(\iota\) :

Dimensionless time

\(\phi\) :

Solid volume fraction

\(\varphi\) :

Phase deviation angle

\(\theta\) :

Dimensionless temperature

\(\lambda\) :

Stretching parameter

i, j:

Cell faces

nf:

Nanofluid

f:

Fluid

s:

Solid

b:

Bottom wall

m:

Average

c:

Cold wall

h:

Hot wall

References

  1. Xu Z, Kleinstreuer C. Concentration photovoltaicthermal energy co-generation system using nanofluids for cooling and heating. Energ Conver Manag. 2014;87:504–12.

    Article  Google Scholar 

  2. Saidina DS, Abdullah MZ, Hussin M. Metal oxide nanofluids in electronic cooling: a review. J Materi Sci Materi Electr. 2020;31:4381–98.

    Article  CAS  Google Scholar 

  3. Stefan-Kharicha M, Kharicha A, Zaidat K, Reiss G, Eßl W, Goodwin F, Wu M, Ludwig A, Mugrauer C. Impact of hydrodynamics on growth and morphology of faceted crystals. J Cryst Growth. 2020;541(1):125667.

    Article  CAS  Google Scholar 

  4. Esfe MH, Afrand M. A review on fuel cell types and the application of nanofluid in their cooling. J Therm Anal Calorim. 2020;140:1633–54.

    Article  CAS  Google Scholar 

  5. Nazari M, Ashouri M, Kayhani MH, Tamayol A. Experimental study of convective heat transfer of a nanofluid through a pipe filled with metal foam. Int J Therm Sci. 2015;88:33–9.

    Article  CAS  Google Scholar 

  6. Kianpour R, Ansarifar GR. Assessment of the nano-fluid effects on the thermal reactivity feedback coefficients in the VVER-1000 nuclear reactor with nano-fluid as a coolant using thermal hydraulic and neutronics analysis. Ann Nucl Energy. 2019;133:623–36.

    Article  CAS  Google Scholar 

  7. Farid M. Chapter 17-heat and mass transfer in food processing, handbook of farm, dairy and food machinery engineering. 3rd ed. Cambridge: Academic Press; 2019. p. 439–60.

    Book  Google Scholar 

  8. Kapicioglua A, Esen H. Experimental investigation on using \({\text{ Al }}_{2} {\text{ O }}_{3}\)/ethylene glycol-water nano-fluid in different types of horizontal ground heat exchangers. Appl Therm Eng. 2020;165(25):114559.

    Article  CAS  Google Scholar 

  9. Baghernezhad D, Siavashi M, Nakhaee A. Optimal scenario design of steam-assisted gravity drainage to enhance oil recovery with temperature and rate control. Energy. 2019;166(1):610–23.

    Article  Google Scholar 

  10. Vasilyeva M, Babaei M, Chung ET, Spiridonov D. Multiscale model ing of heat and mass transfer in fractured media for enhanced geothermal systems applications. Appl Math Model. 2019;67:159–78.

    Article  Google Scholar 

  11. Karatas H, Derbentli T. Natural convection in rectangular cavities with one active vertical wall. Int J Heat Mass Transf. 2017;105:305–15.

    Article  CAS  Google Scholar 

  12. Mehryan S, Ghalambaz M, Ismael M, Chamkha AJ. Analysis of fluid-solid interaction in MHD natural convection in a square cavity equally partitioned by a vertical flexible membrane. J Magn Magn Mater. 2017;424:161–73.

    Article  CAS  Google Scholar 

  13. Torki M, Etesami N. Experimental investigation of natural convection heat transfer of \({\text{ SiO }}_{2}\)/water nanofluid inside inclined enclosure. J Therm Anal Calorim. 2020;139:1565–74.

    Article  CAS  Google Scholar 

  14. Ma Y, Mohebbi R, Rashidi MM, Yang Z, Sheremet MA. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int J Heat Mass Transf. 2019;130:123–34.

    Article  CAS  Google Scholar 

  15. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng Div. 1995;231:99–105.

    CAS  Google Scholar 

  16. Xian HW, Sidik NAC, Najafi G. Recent state of nanofluid in automobile cooling systems. J Therm Anal Calorim. 2019;135:981–1008.

    Article  CAS  Google Scholar 

  17. Khan A, Ali HM, Nazir R, Ali R, Munir A, Ahmad B, Ahmad Z. Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in \({\text{ H }}_{2}\)O-ethylene glycol mixture. J Therm Anal Calorim. 2019;138:3007–21.

    Article  CAS  Google Scholar 

  18. Soliman AMA, rahman AKA, Ookawara S. Enhancement of vapor compression cycle performance using nanofluids. J Therm Anal Calorim. 2019;135:1505–20.

    Google Scholar 

  19. Khanafer K, Vafai K. Applications of nanofluids in porous medium. J Therm Anal Calorim. 2019;135:1479–92.

    Article  CAS  Google Scholar 

  20. Barkalina N, Charalambous C, Jones C, Coward K. Nanotechnology in reproductive medicine: emerging applications of nanomaterials. Nanomed Nanotechnol Biol Med. 2014;10(5):e921–38.

    Article  CAS  Google Scholar 

  21. Neyestani M, Nazir M, Shahmardan MM, Sharifpur M, Ashouri M, Meyer JP. Thermal characteristics of CPU cooling by using a novel porous heat sink and nanofluids. J Therm Anal Calorim. 2019;138:805–17.

    Article  CAS  Google Scholar 

  22. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2019;135:551–63.

    Article  CAS  Google Scholar 

  23. Heyhat MM, Mousavi S, Siavashi M. Battery thermal management with thermal energy storage compositesPCM, metal foam, fin and nanoparticle. J Energ Storage. 2020;28:101235.

    Article  Google Scholar 

  24. Mousavi S, Siavashi M, Heyhat MM. Numerical melting performance analysis of a cylindrical thermal energy storage unit using nano-enhanced PCM and multiple horizontal fins. Numer Heat Transf Part A Appl. 2019;75(8):560–77.

    Article  Google Scholar 

  25. Ramezanpour M, Siavashi M. Application of \({\text{ SiO }}_{2}\)-water nanofluid to enhance oil recovery. J Therm Anal Calorim. 2019;135:565–80.

    Article  CAS  Google Scholar 

  26. Siavashi M, Ghasemi K, Yousofvand R, Derakhshan S. Computational analysis of SWCNH nanofluid-based direct absorption solar collector with a metal sheet. Sol Energy. 2018;170:252–62.

    Article  CAS  Google Scholar 

  27. Mahian O, Kolsi L, Amani M, Estellė P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2019;790(3):1–48.

    CAS  Google Scholar 

  28. Mahian O, Kolsi L, Amani M, Estellė P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2019;791(13):1–59.

    CAS  Google Scholar 

  29. Ba TL, Mahian O, Wongwises S, Szilȧgyi IM. Review on the recent progress in the preparation and stability of graphene-based nanofluids. J Therm Anal Calorim. 2020;. https://doi.org/10.1007/s10973-020-09365-9.

    Article  Google Scholar 

  30. Revnic C, Abu-Nada E, Grosan T, Pop I. Natural convection in a rectangular cavity filled with nanofluids: effect of variable viscosity. Int J Numer Meth Heat Fluid Flow. 2018;28(6):1410–32.

    Article  Google Scholar 

  31. Maskaniyan M, Nazari M, Rashidi S, Mahian O. Natural convection and entropy generation analysis inside a channel with a porous plate mounted as a cooling system. Therm Sci Eng Prog. 2018;6:186–93.

    Article  Google Scholar 

  32. Ghodsinezhad H, Sharifpur M, Meyer JP. Experimental investigation on cavity flow natural convection of \({\text{ Al }}_{2} {\text{ O }}_{3}\)-water nanofluids. Int Commun Heat Mass Transf. 2016;76:316–24.

    Article  CAS  Google Scholar 

  33. Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;135:1145–59.

    Article  CAS  Google Scholar 

  34. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.

    Article  CAS  Google Scholar 

  35. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135:437–60.

    Article  CAS  Google Scholar 

  36. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115(B):1203–33.

    Article  CAS  Google Scholar 

  37. Rashidi S, Esfahani JA, Maskaniyan M. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies. J Magn Magn Mater. 2017;439:358–72.

    Article  CAS  Google Scholar 

  38. Izadi A, Siavashi M, Rasam H, Xiong Q. MHD enhanced nanofluid mediated heat transfer in porous metal for CPU cooling. Appl Therm Eng. 2020;168(5):114843.

    Article  CAS  Google Scholar 

  39. Yousofvand R, Derakhshan S, Ghasemi K, Siavashi M. MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanouid using 3D Lbm simulation. Int J Mechan Sci. 2017;133:73–90.

    Article  Google Scholar 

  40. Ghasemi K, Siavashi M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater. 2017;442(15):474–90.

    Article  CAS  Google Scholar 

  41. Selimefendigil F, Oztop HF, Chamkha AJ. Natural convection in a CuOwater nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall. J Thermal Anal Calorim. 2019;135:1577–94.

    Article  CAS  Google Scholar 

  42. Ghasemi K, Siavashi M. Three-dimensional analysis of magnetohydrodynamic transverse mixed convection of nanofluid inside a lid-driven enclosure using MRT-LBM. Int J Mecha Sci. 2020;165(1):105199.

    Article  Google Scholar 

  43. Hussama WK, Khanafera K, Salema HJ, Sheard GJ. Natural convection heat transfer utilizing nanofluid in a cavity with a periodic side-wall temperature in the presence of a magnetic field. Int Commun Heat Mass Transf. 2019;104:127–35.

    Article  CAS  Google Scholar 

  44. Sathiyamoorthy M, Chamkha A. Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int J Therm Sci. 2010;49(9):1856–65.

    Article  CAS  Google Scholar 

  45. Kahveci K, Öztuna S. MHD natural convection flow and heat transfer in a laterally heated partitioned enclosure. Eur J Mech B Fluids. 2009;28(6):744–52.

    Article  Google Scholar 

  46. Mahmoudi A, Mejri I, Abbassi MA, Omri A. Analysis of MHD natural convection in a nanofluid-filled open cavity with non uniform boundary condition in the presence of uniform heat generation/absorption. Powder Technol. 2015;269:275–89.

    Article  CAS  Google Scholar 

  47. Freidoonimehr N, Rashidi MM, Mahmud S. Unsteady MHD free convective flow past a permeable stretching vertical surface in a nano-fluid. Int J Therm Sci. 2015;87:136–45.

    Article  CAS  Google Scholar 

  48. Ibán̈ez G, López A, Pantoja J, Moreira J. Entropy generation analysis of a nanofluid flow in MHD porous microchannel with hydrodynamic slip and thermal radiation. Int J Heat Mass Transf. 2016;100:89–97.

    Article  CAS  Google Scholar 

  49. Saidi MH, Tamim H. Heat transfer and pressure drop characteristics of nanofluid in unsteady squeezing flow between rotating porous disks considering the effects of thermophoresis and brownian motion. Adv Powder Technol. 2016;27(2):564–74.

    Article  Google Scholar 

  50. Sheikholeslami M. Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A. 2017;381:494–503.

    Article  CAS  Google Scholar 

  51. Ghasemi B, Aminossadati SM, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50(9):1748–56.

    Article  CAS  Google Scholar 

  52. Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A. Simulation of MHD CuO-water nanofluid flow and convective heat transfer considering lorentz forces. J Magn Magn Mater. 2014;369:69–80.

    Article  CAS  Google Scholar 

  53. Ahmed SE, Mansour MA, Rashad AM, Salah T. MHD natural convection from two heating modes in fined triangular enclosures filled with porous media using nanofluids. J Therm Anal Calorim. 2020;139:3133–49.

    Article  CAS  Google Scholar 

  54. Pandit SK, Chattopadhyay A. Higher order compact computations of transient natural convection in a deep cavity with porous medium. Int J Heat Mass Transf. 2014;75:624–36.

    Article  Google Scholar 

  55. Pandit SK, Chattopadhyay A. A robust higher order compact scheme for solving general second order partial differential equation with derivative source terms on nonuniform curvilinear meshes. Comput Math Appl. 2017;74(6):1414–34.

    Article  Google Scholar 

  56. Van Der Vorst H. BiCGSTAB: a fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems. SIAM J Sci Comput. 1992;13(2):631–44.

    Article  Google Scholar 

  57. Calcagni B, Marsili F, Paroncini M. Natural convective heat transfer in square enclosures heated from below. Appl Therm Eng. 2005;25(16):2522–31.

    Article  CAS  Google Scholar 

  58. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    Article  CAS  Google Scholar 

  59. Nguyen CT, Desgranges F, Roy G, Galanis N, Marė T, Boucher S, Mintsa HA. Temperature and particle-size dependent viscosity data for water-based nanofluidshysteresis phenomenon. Int J Heat Fluid Flow. 2007;28(6):1492–506.

    Article  CAS  Google Scholar 

  60. Li CH, Peterson GP. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys. 2006;99:084314.

    Article  CAS  Google Scholar 

  61. Xuan YM, Hu WF, Li Q. Simulations of structure and thermal conductivity of nanofluids. J Eng Thermophys. 2002;23(2):206–8.

    CAS  Google Scholar 

  62. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125(4):567–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishno D. Goswami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, A., Goswami, K.D., Pandit, S.K. et al. Thermal performance in transient MHD thermogravitational convection of nanofluid with various heating effects. J Therm Anal Calorim 146, 1255–1281 (2021). https://doi.org/10.1007/s10973-020-10077-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10077-3

Keywords

Navigation