Skip to main content
Log in

Thermal decomposition behavior and mechanism study of cationic polyacrylamide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition behavior of polyacrylamide poly (methacryloyloxyethyl trimethylammonium chloride-acrylamide) (P(DMC-AM)) was studied by means of TG and DSC under nitrogen atmosphere at temperature range of 323.15–823.15 K. The effect of cationicity on thermal stability was discussed. The TG/DSC curves indicated that the decomposition process of P(DMC-AM) included three steps, and an increase in cationicity resulted in a slightly increased decomposition temperature and decomposition enthalpy, indicating a higher thermostability for P(DMC-AM). Furthermore, the evolved gases during the degradation were analyzed simultaneously via TG coupled with FTIR and MS. The possible thermal composition mechanism was proposed and validated by calculating the bond orders. The results from this study might supply useful message for expanding innovative application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kitahara Y, Okuyama K, Ozawa K, Suga T, Takahashi S, Fujii T. Thermal decomposition of acrylamide from polyacrylamide. J Therm Anal Calorim. 2012;110(1):423–9. https://doi.org/10.1007/s10973-012-2544-7.

    Article  CAS  Google Scholar 

  2. Feng L, Zheng H, Wang Y, Zhang S, Xu B. Ultrasonic-template technology inducing and regulating cationic microblocks in CPAM: characterization, mechanism and sludge flocculation performance. RSC Adv. 2017;7(38):23444–56. https://doi.org/10.1039/c7ra03784h.

    Article  CAS  Google Scholar 

  3. Abdollahi Z, Frounchi M, Dadbin S. Synthesis, characterization and comparison of PAM, cationic PDMC and P(AM-co-DMC) based on solution polymerization. J Ind Eng Chem. 2011;17(3):580–6. https://doi.org/10.1016/j.jiec.2010.10.030.

    Article  CAS  Google Scholar 

  4. Kesal D, Christau S, Trapp M, Krause P, von Klitzing R. The internal structure of PMETAC brush/gold nanoparticle composites: a neutron and X-ray reflectivity study. Phys Chem Chem Phys. 2017;19(45):30636–46. https://doi.org/10.1039/c7cp04404f.

    Article  CAS  PubMed  Google Scholar 

  5. Van Rossum R, Holappa S, Kyllonen L, inventors; Kemira Oyj, Finland. assignee. Method for preparing a dry cationic hydrogel polymer product, polymer product and its use. World pantent: WO2016079383A1. 2016.

  6. Mahara S, Wang X, Dobashi Y, Sasadaira M, inventors; Sekisui Chemical Co., Ltd., Japan. assignee. Method of manufacturing a connection structure with increased viscosity of the binder resin in the conductive film to decrease the connection resistance between electrodes. World pantent: WO2017051872A1. 2017.

  7. Qian J. Several questions about cationic polymer flocculants. Funct Polym. 2002;21:3–6.

    Google Scholar 

  8. Wang Q, Zhang W, Yang Z, Xu Q, Yang P, Wang D. Enhancement of anaerobic digestion sludge dewatering performance using in situ crystallization in combination with cationic organic polymers flocculation. Water Res. 2018;146:19–29. https://doi.org/10.1016/j.watres.2018.09.015.

    Article  CAS  PubMed  Google Scholar 

  9. De Buruaga AS, De la Cal JC, Asua JM. Inverse microemulsion polymerization of MADQUAT initiated with sodium metabisulfite. Polymer. 1999;41(4):1269–76.

    Article  Google Scholar 

  10. He Y, Li G, Yang F, Yu X, Cui Y, Ren F. Precipitation polymerization of acrylamide with quaternary ammonium cationic monomer in potassium carbonate solution initiated by plasma. J Appl Polym Sci. 2007;104(6):4060–7. https://doi.org/10.1002/app.25649.

    Article  CAS  Google Scholar 

  11. Goel NK, Rao MS, Kumar V, Bhardwaj YK, Chaudhari CV, Dubey KA, et al. Synthesis of antibacterial cotton fabric by radiation-induced grafting of [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MAETC) onto cotton. Radiat Phys Chem. 2009;78(6):399–406. https://doi.org/10.1016/j.radphyschem.2009.03.011.

    Article  CAS  Google Scholar 

  12. Ma Y, Sun X. Study of gelatin-AM-DMC graft copolymerization under microwave radiation and its strengthening effect to wood pulp. Adv Mater Res. 2011;233:1718–21. https://doi.org/10.4028/www.scientific.net/AMR.233-235.1718.

    Article  CAS  Google Scholar 

  13. Zhang B, Lv X, An Z. Modular monomers with tunable solubility: synthesis of highly incompatible block copolymer nano-objects via RAFT aqueous dispersion polymerization. ACS Macro Lett. 2017;6(3):224–8. https://doi.org/10.1021/acsmacrolett.7b00056.

    Article  CAS  Google Scholar 

  14. Zhang N, Wu Y, Xu J, Liu Y. Characterization and solution properties of acrylamide/(2-methacryloyloxyethyl) trimethylammonium chloride/dimethydiallylammonium chloride terpolymer. Chem Eng Commun. 2010;38(4):65–8.

    CAS  Google Scholar 

  15. Xu L, Che L, Zheng J, Huang G, Wu X, Chen P, et al. Synthesis and thermal degradation property study of N-vinylpyrrolidone and acrylamide copolymer. RSC Adv. 2014;4(63):33269–78. https://doi.org/10.1039/C4RA05720A.

    Article  CAS  Google Scholar 

  16. Reber AC, Khanna SN, Ottenbrite R. Thermodynamic stability of polyacrylamide and poly(N, N-dimethyl acrylamide). Polym Adv Technol. 2007;18(12):978–85. https://doi.org/10.1002/pat.949.

    Article  CAS  Google Scholar 

  17. Caulfield MJ, Qiao GG, Solomon DH. Some aspects of the properties and degradation of polyacrylamides. Chem Rev (Washington, DC, U S). 2002;102(9):3067–83. https://doi.org/10.1021/cr010439p.

    Article  CAS  Google Scholar 

  18. Phang Y-N, Chee S-Y, Lee C-O, Teh Y-L. Thermal and microbial degradation of alginate-based superabsorbent polymer. Polym Degrad Stab. 2011;96(9):1653–61. https://doi.org/10.1016/j.polymdegradstab.2011.06.010.

    Article  CAS  Google Scholar 

  19. Liu Y, Wang J, Zhu P, Zhao J, Zhang C, Guo Y, et al. Thermal degradation properties of biobased iron alginate film. J Anal Appl Pyrol. 2016;119:87–96. https://doi.org/10.1016/j.jaap.2016.03.014.

    Article  CAS  Google Scholar 

  20. Trimpin S, Wijerathne K, McEwen CN. Rapid methods of polymer and polymer additives identification: multi-sample solvent-free MALDI, pyrolysis at atmospheric pressure, and atmospheric solids analysis probe mass spectrometry. Anal Chim Acta. 2009;654(1):20–5. https://doi.org/10.1016/j.aca.2009.06.050.

    Article  CAS  PubMed  Google Scholar 

  21. Tudorachi N, Chiriac AP. TGA/FTIR/MS study on thermal decomposition of poly(succinimide) and sodium poly(aspartate). Polym Test. 2011;30:397–407. https://doi.org/10.1016/j.polymertesting.2011.02.007.

    Article  CAS  Google Scholar 

  22. Liu T, Sun C, Ma F. Study on the synthesis and thermal degradation of vinylphenylpolysilsesquioxane. J Anal Appl Pyrolysis. 2018;130:249–55. https://doi.org/10.1016/j.jaap.2017.12.024.

    Article  CAS  Google Scholar 

  23. Zhang Y, Fu X. Preparation of P(DMC-AM) with high molecular weight and serial cationicities. Chinese patent: 201910073957.1. 2019.

  24. de Carvalho GC, de Moura MDFV, de Castro HGC, da Silva JJH, da Silva HEB, dos Santos KM, et al. Influence of the atmosphere on the decomposition of vegetable oils: study of the profiles of FTIR spectra and evolution of gaseous products. J Therm Anal Calorim. 2020;140(5):2247–58. https://doi.org/10.1007/s10973-019-08960-9.

    Article  CAS  Google Scholar 

  25. Feng L, Liu S, Zheng H, Liang J, Sun Y, Zhang S, et al. Using ultrasonic (US)-initiated template copolymerization for preparation of an enhanced cationic polyacrylamide (CPAM) and its application in sludge dewatering. Ultrason Sonochem. 2018;44:53–63. https://doi.org/10.1016/j.ultsonch.2018.02.017.

    Article  CAS  PubMed  Google Scholar 

  26. Ma J, He L, Huang L, Peng Q, Cai X. Synthesis of aliphatic–aromatic polyamide carbonized system with phosphoramide structure and study on its thermal degradation mechanism and flame retardancy in polypropylene system. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09879-2.

    Article  Google Scholar 

  27. Tang L, Zhang Y. Research on the preparation of poly-methacrylatoethyltrimethyl ammonium chloride(PDMC). Fine Chem. 2014;31(11):1324–9.

    CAS  Google Scholar 

  28. Li X, Liu B, Zhao C, Zheng H, Gao B, Sun Y. UV-initiated template copolymerization of AM and MAPTAC: microblock structure, copolymerization mechanism, and flocculation performance. Chemosphere. 2017;167:71–81.

    Article  CAS  Google Scholar 

  29. Tutas M, Saglam M, Yuksel M. Investigation of pyrolysis products of polyacrylamide by pyrolysis-gas chromatography. J Anal Appl Pyrolysis. 1991;22(1–2):129–37. https://doi.org/10.1016/0165-2370(91)85012-V.

    Article  CAS  Google Scholar 

  30. Zan L-N, Nie L-H, Yang P, Yuan Q. The synthesis of poly(DAC-AM). Huaxue Tuijinji Yu Gaofenzi Cailiao. 2009;7(1):34–5.

    CAS  Google Scholar 

  31. Caglar B, Coldur F, Caglar S, Cubuk O, Tabak A, Topcu C. Structural, thermal and morphological properties of a novel poly(acrylamide-co-methacrylic acid)/organoclay nanocomposite. Inorg Nano-Met Chem. 2017;47(3):360–4. https://doi.org/10.1080/15533174.2016.1186063.

    Article  CAS  Google Scholar 

  32. Singh A, Singh S, Sharma TC, Kishore P. Physicochemical properties and kinetic analysis for some fluoropolymers by differential scanning calorimetry. Polym Bull (Heidelberg, Ger). 2017;75(6):2315–38. https://doi.org/10.1007/s00289-017-2153-5.

    Article  CAS  Google Scholar 

  33. Dmitrieva TV, Sirovatka LA, Bortnitskii VI. Effect of preliminary mechanical activation of polyacrylamide in the presence of metal on polymer thermal decomposition. Zh Prikl Khim (S-Peterburg). 1998;71(10):1709–12.

    CAS  Google Scholar 

  34. Mallick L, Kumar S, Chowdhury A. Thermal decomposition of ammonium perchlorate-A TGA-FTIR-MS study: part II. Thermochim Acta. 2017;610:57–68. https://doi.org/10.1016/j.tca.2017.04.004.

    Article  CAS  Google Scholar 

  35. Hamciuc C, Lisa G, Hamciuc E, Tudorachi N. Thermal decomposition study of some polyimide-polydimethylsiloxane copolymers. J Anal Appl Pyrolysis. 2018;129:204–14. https://doi.org/10.1016/j.jaap.2017.11.011.

    Article  CAS  Google Scholar 

  36. Gu X, Ma X, Li L, Liu C, Cheng K, Li Z. Pyrolysis of poplar wood sawdust by TG-FTIR and Py–GC/MS. J Anal Appl Pyrol. 2013;102:16–23. https://doi.org/10.1016/j.jaap.2013.04.009.

    Article  CAS  Google Scholar 

  37. Li Y-Y, Ren N, He S-M, Zhang J-J. Supramolecular structures, thermal decomposition mechanism and heat capacity of the novel binuclear Tb(III) and Dy(III) complexes with 2,3-dimethoxybenzoic acid and 5,5′-dimety-2,2′-bipyridine. J Therm Anal Calorim. 2020;140(5):2435–45. https://doi.org/10.1007/s10973-019-08944-9.

    Article  CAS  Google Scholar 

  38. Mohsin IU, Lager D, Gierl C, Hohenauer W, Danninger H. Thermo-kinetics study of MIM thermal de-binding using TGA coupled with FTIR and mass spectrometry. Thermochim Acta. 2010;503–504:40–5. https://doi.org/10.1016/j.tca.2010.03.005.

    Article  CAS  Google Scholar 

  39. Tomescu M, Cretu S, Chivulescu E, Ciohodaru L, Dragutescu M. Thermal degradation of acrylamide-maleic anhydride copolymer. Mater Plast (Bucharest). 1985;22(2):108–10.

    CAS  Google Scholar 

  40. Coleman MM, Gordon B III. The degradation of acrylonitrile—acrylamide copolymers. Anal Proc (London). 1983;20(11):572–4.

    CAS  Google Scholar 

  41. King B, Lessard BH. Controlled synthesis and degradation of poly(N-(isobutoxymethyl) acrylamide) homopolymers and block copolymers. Macromol React Eng. 2017. https://doi.org/10.1002/mren.201600073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Yang, Q. & Zhang, Y. Thermal decomposition behavior and mechanism study of cationic polyacrylamide. J Therm Anal Calorim 146, 1371–1381 (2021). https://doi.org/10.1007/s10973-020-10131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10131-0

Keywords

Navigation