Skip to main content
Log in

Synthesis, structure, photoluminescence, band gap and energy transfer mechanism of a novel bimetallic thulium–mercury compound with a three-dimensional framework

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Under hydrothermal conditions, a novel bimetallic thulium–mercury compound {[Tm(H2O)2(IA)3]2n[(Hg6Br13)n]}(nHgBr2)·4nH2nH3O (1) (IA = isonicotinato anion) was prepared and the crystal structure was characterized by single-crystal and powder X-ray diffraction. It is characterized by a three-dimensional (3D) framework with a novel two-dimensional (2D) inorganic [(Hg6Br13)n] layer. Solid-state photoluminescence measurements revealed that compound 1 emits upconversion mazarine emission bands, which are originated from the 1G4 → 3H6 and 1D2 → 3H4 characteristic emissions of the 4f electron intrashell transitions of Tm(III) ions. An energy transfer mechanism is reported. Compound 1 displays CIE chromaticity coordinates of 0.1288 and 0.0635 in the mazarine region. A solid-state UV–Vis–NIR diffuse reflectance spectrum unveiled that compound 1 has a wide optical band gap of 2.69 eV. A thermogravimetry analysis measurement is also reported.

Graphic abstract

A novel bimetallic thulium–mercury compound was prepared and characterized. It features a 3D framework with a novel 2D inorganic [(Hg6Br13)n] layer. It contains many mercury(II) ions with four different coordination environments. It emits upconversion mazarine photoluminescence emission peaks, which could be attributed to the 1G4 → 3H6 and 1D2 → 3H4 characteristic emissions of the 4f electron intrashell transitions of the Tm(III) ions. An energy level diagram was used to explain the energy transfer mechanism. It has CIE chromaticity coordinates of 0.1288 and 0.0635 in the mazarine region, and it possesses a wide optical band gap of 2.69 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.A. Hernandez-Rodriguez, C.D.S. Brites, G. Antorrena, R. Pinol, R. Cases, L. Perez-Garcia, M. Rodrigues, J.A. Plaza, N. Torras, I. Diez, A. Millan, L.D. Carlos, Adv. Opt. Mater. 8, 2070050 (2020)

    CAS  Google Scholar 

  2. M. Kaczmarek, J. Lumin. 222, 117174 (2020)

    CAS  Google Scholar 

  3. M. Cardoso Dos Santos, A. Runser, H. Bartenlian, A.M. Nonat, L.J. Charbonniere, A.S. Klymchenko, N. Hildebrandt, A. Reisch, Chem. Mater. 31, 4034 (2019)

    CAS  Google Scholar 

  4. X. Song, S. Li, H. Guo, W. You, X. Shang, R. Li, D. Tu, W. Zheng, Z. Chen, H. Yang, X. Chen, Angew. Chem. Int. Ed. 58, 18981 (2019)

    CAS  Google Scholar 

  5. G.X. Wen, M.L. Han, X.Q. Wu, Y.P. Wu, W.W. Dong, J. Zhao, D.S. Li, L.F. Ma, Dalton Trans. 45, 15492 (2016)

    CAS  PubMed  Google Scholar 

  6. Z. Zhou, J.P. Gu, X.G. Qiao, H.X. Wu, H.R. Fu, L. Wang, H.Y. Li, L.F. Ma, Sens. Actuator B Chem. 282, 437 (2019)

    CAS  Google Scholar 

  7. A.J. Talib, M. Alkahtani, L. Jiang, F. Alghannam, R. Brick, C.L. Gomes, M.O. Scully, A.V. Sokolov, P.R. Hemmer, Opt. Mater. Express 8, 3277 (2018)

    CAS  Google Scholar 

  8. Z. Wei, L. Ren, X. Xiao, Q. Zhang, J. Huang, R. Liu, S. Zhao, W. Xu, J. Solid State Chem. 277, 594 (2019)

    CAS  Google Scholar 

  9. J.-H. Wei, J.-W. Yi, M.-L. Han, B. Li, S. Liu, Y.-P. Wu, L.-F. Ma, D.-S. Li, Chem. Asian J. 14, 3694 (2019)

    CAS  PubMed  Google Scholar 

  10. J.-H. Wang, D. Luo, M. Li, D. Li, Cryst. Growth Des. 17, 3387 (2017)

    CAS  Google Scholar 

  11. T.-F. Zheng, S.-L. Yao, C. Cao, S.-J. Liu, H.-K. Hu, T. Zhang, H.-P. Huang, J.-S. Liao, J.-L. Chen, H.-R. Wen, New J. Chem. 41, 8598 (2017)

    CAS  Google Scholar 

  12. C. Meseguer, M.A. Palacios, A.J. Mota, B. Drahos, E.K. Brechin, R. Navarrete, J.M. Moreno, E. Colacio, Polyhedron 170, 373 (2019)

    CAS  Google Scholar 

  13. S.-J. Liu, C. Cao, S.-L. Yao, T.-F. Zheng, Z.-X. Wang, C. Liu, J.-S. Liao, J.-L. Chen, Y.-W. Li, H.-R. Wen, Dalton Trans. 46, 64 (2017)

    Google Scholar 

  14. T.-F. Zheng, X.-M. Tian, S.-L. Yao, C. Cao, J.-B. Cai, S.-J. Liu, J. Mol. Struct. 1165, 326 (2018)

    CAS  Google Scholar 

  15. S.-L. Yao, C. Cao, X.-M. Tian, T.-F. Zheng, S.-J. Liu, X.-L. Tong, J.-S. Liao, J.-L. Chen, H.-R. Wen, ChemistrySelect 2, 10673 (2017)

    CAS  Google Scholar 

  16. S.J. Liu, X.R. Xie, T.F. Zheng, J. Bao, J.S. Liao, J.L. Chen, H.R. Wen, CrystEngComm 17, 7270 (2015)

    CAS  Google Scholar 

  17. R.-P. Li, Q.-Y. Liu, Y.-L. Wang, C.-M. Liu, S.-J. Liu, Inorg. Chem. Front. 4, 1149 (2017)

    CAS  Google Scholar 

  18. J. Mayans, L. Sorace, M. Font-Bardia, A. Escuer, Polyhedron 170, 264 (2019)

    CAS  Google Scholar 

  19. B. Li, B. Chen, Struct. Bond. 163, 75 (2015)

    CAS  Google Scholar 

  20. H. Zhang, H. Liu, W. Jiang, S.-S. Zhao, Dyes Pigments 171, 107665 (2019)

    CAS  Google Scholar 

  21. S.J. Liu, C. Cao, C.C. Xie, T.F. Zheng, X.L. Tong, J.S. Liao, J.L. Chen, H.R. Wen, Z. Chang, X.H. Bu, Dalton Trans. 45, 9209 (2016)

    CAS  PubMed  Google Scholar 

  22. J.Q. Li, L.L. Gong, X.F. Feng, L. Zhang, H.Q. Wu, C.S. Yan, Y.Y. Xiong, H.Y. Gao, F. Luo, Chem. Eng. J. 316, 154 (2017)

    CAS  Google Scholar 

  23. K. Staszak, K. Wieszczycka, V. Marturano, B. Tylkowski, Coord. Chem. Rev. 397, 76 (2019)

    CAS  Google Scholar 

  24. T.-F. Zheng, C. Cao, P.-P. Dong, S.-J. Liu, F.-F. Wang, X.-L. Tong, J.-S. Liao, J.-L. Chen, H.-R. Wen, Polyhedron 113, 96 (2016)

    CAS  Google Scholar 

  25. M.B. Coban, A. Amjad, M. Aygun, H. Kara, Inorg. Chim. Acta 455, 25 (2017)

    CAS  Google Scholar 

  26. J.W. Rong, W.W. Zhang, J.F. Bai, RSC Adv. 6, 103714 (2016)

    CAS  Google Scholar 

  27. N. Ahmed, J. Nisar, R. Kouser, A.G. Nabi, S. Mukhtar, Y. Saeed, M.H. Nasim, Mater. Res. Express 4, 065903/1 (2017)

    CAS  Google Scholar 

  28. S. Rai, S. Sen, R. Kothari, Int. J. Pharma Bio Sci. 10, B36 (2019)

    CAS  Google Scholar 

  29. S.L. Yao, T.F. Zheng, X.M. Tian, S.J. Liu, C. Cao, Z.H. Zhu, Y.Q. Chen, J.L. Chen, H.R. Wen, CrystEngComm 20, 5822 (2018)

    CAS  Google Scholar 

  30. H.Q. Wu, C.S. Yan, F. Luo, R. Krishna, Inorg. Chem. 57, 3679 (2018)

    CAS  PubMed  Google Scholar 

  31. Y.P. Wu, J.W. Tian, S. Liu, B. Li, J. Zhao, L.F. Ma, D.S. Li, Y.Q. Lan, X. Bu, Angew. Chem. Int. Ed. 58, 12185 (2019)

    CAS  Google Scholar 

  32. L.L. Gong, X.F. Feng, F. Luo, X.F. Yi, A.M. Zheng, Green Chem. 18, 2047 (2016)

    CAS  Google Scholar 

  33. Y. Zhang, T.S. Lee, J.M. Favale, D.C. Leary, J.L. Petersen, G.D. Scholes, F.N. Castellano, C. Milsmann, Nat. Chem. 12, 345 (2020)

    CAS  PubMed  Google Scholar 

  34. H.R. Fu, N. Wang, J.H. Qin, M.L. Han, L.F. Ma, F. Wang, Chem. Commun. 54, 11645 (2018)

    CAS  Google Scholar 

  35. C. Cao, S.J. Liu, S.L. Yao, T.F. Zheng, Y.Q. Chen, J.L. Chen, H.R. Wen, Cryst. Growth Des. 17, 4757 (2017)

    CAS  Google Scholar 

  36. S.J. Liu, C. Cao, F. Yang, M.H. Yu, S.L. Yao, T.F. Zheng, W.W. He, H.X. Zhao, T.L. Hu, X.H. Bu, Cryst. Growth Des. 16, 6776 (2016)

    CAS  Google Scholar 

  37. X.G. Yang, L.F. Ma, D.P. Yan, Chem. Sci. 10, 4567 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. C.B. Fan, L. Le Gong, L. Huang, F. Luo, R. Krishna, X.F. Yi, A.M. Zheng, L. Zhang, S.Z. Pu, X.F. Feng, M.B. Luo, G.C. Guo, Angew. Chem. Int. Ed. 56, 7900 (2017)

    CAS  Google Scholar 

  39. X.G. Yang, Z.M. Zhai, X.M. Lu, Y. Zhao, X.H. Chang, L.F. Ma, Dalton Trans. 48, 10785 (2019)

    CAS  PubMed  Google Scholar 

  40. S.L. Yao, S.J. Liu, X.M. Tian, T.F. Zheng, C. Cao, C.Y. Niu, Y.Q. Chen, J.L. Chen, H. Huang, H.R. Wen, Inorg. Chem. 58, 3578 (2019)

    CAS  PubMed  Google Scholar 

  41. W.H. Yin, Y.Y. Xiong, H.Q. Wu, Y. Tao, L.X. Yang, J.Q. Li, X.L. Tong, F. Luo, Inorg. Chem. 57, 8722 (2018)

    CAS  PubMed  Google Scholar 

  42. Y. Zhao, L. Wang, N.N. Fan, M.L. Han, G.P. Yang, L.F. Ma, Cryst. Growth Des. 18, 7114 (2018)

    CAS  Google Scholar 

  43. H.R. Khavasi, N. Rahimi, Cryst. Growth Des. 17, 834 (2017)

    CAS  Google Scholar 

  44. S.J. Sabounchei, M. Ahmadianpoor, A. Hashemi, F. Mohsenzadeh, R.W. Gable, Inorg. Chim. Acta 458, 77 (2017)

    CAS  Google Scholar 

  45. H. Zhou, Q. Chen, A.-H. Yuan, H.-B. Zhou, X.-P. Shen, L. Chen, Y. Song, Cryst. Growth Des. 17, 6523 (2017)

    CAS  Google Scholar 

  46. W.-W. Wang, X. Xu, J.-T. Kong, J.-G. Mao, Inorg. Chem. 57, 163 (2017)

    PubMed  Google Scholar 

  47. J. Wahsner, M. Seitz, Inorg. Chem. 52, 13301 (2013)

    CAS  PubMed  Google Scholar 

  48. X. Chen, G.J. Salamo, G. Yang, Y. Li, X. Ding, Y. Gao, Q. Liu, J. Guo, Opt. Express 21, A829/1 (2013)

    Google Scholar 

  49. A. Barati, M. Shamsipur, H. Abdollahi, J. Iran. Chem. Soc. 12, 441 (2015)

    CAS  Google Scholar 

  50. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    CAS  Google Scholar 

  51. S. Sato, M. Wada, Bull. Chem. Soc. Jpn. 43, 1955 (1970)

    CAS  Google Scholar 

  52. F.Q. Huang, K. Mitchell, J.A. Ibers, Inorg. Chem. 40, 5123 (2001)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Tong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WT. Synthesis, structure, photoluminescence, band gap and energy transfer mechanism of a novel bimetallic thulium–mercury compound with a three-dimensional framework. J IRAN CHEM SOC 18, 181–189 (2021). https://doi.org/10.1007/s13738-020-02015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02015-9

Keywords

Navigation