Skip to main content
Log in

Optimization of microbiological plastic film test plate conditions for rapid detection of antibiotics in milk

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Food safety and quality are issues of great concern to food producers and consumers. Key challenges towards achieving these include availability of rapid, user-friendly, economic and reliable techniques to detect problems such as antibiotic residues. Therefore, the present study was conducted to evaluate performance of plastic film test plate (PFTP) as influenced by antibiotic type, test bacterium, inoculum volume and concentration. Comparison was made to the microtiter test plate (MTP) and the National Standard method (SN/T 3979-2014). For this, antibiotic susceptibility testing was conducted on four bacterial types (Micrococcus luteus, Streptococcus thermophillus suspensions, Staphylococcus aureus and Coliform bacteria) against three antibiotics (penicillin G, sulfadiazine and tetracycline). Results showed high susceptibility of Micrococcus luteus to penicillin G with minimum inhibitory concentration of 3 µg L−1 and 1 µg L−1 via PFTP and MTP respectively. Optimum performance was realized at bacterial concentration of 104 CFU ml−1 with detection limit of 1 µg L−1, sensitivity and predictive positive value (PPV) of 81–83% and 97–100% respectively. Detection time was recorded as 6 and 9 h for MTP and PFTP respectively compared to the 18–24 h of the National Standard method (SN/T 3979–2014). The microbiological plastic film test plate under optimized bacterial culture conditions demonstrated tremendous potential for rapid and reliable detection of antibiotics in milk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.I. Berruga, A. Molina, R.L. Althaus, M.P. Molina, Small Rumin. Res. 142, 38 (2016)

    Google Scholar 

  2. N. Bilandžić, B. Kolanović, I. Varenina et al., Food Control 22, 1941 (2011)

    Google Scholar 

  3. F. Conzuelo, V. Montiel, S. Campuzano et al., Anal. Chim. Acta 820, 32 (2014)

    CAS  PubMed  Google Scholar 

  4. P. Sanders, A. Bousquet-Melou, C. Chauvin, P.L. Toutain, INRA Prod. Anim. 24, 199 (2011)

    CAS  Google Scholar 

  5. Z. Khoshbin, A. Verdian, M. Housaindokht, M. Izadyar, Z. Rouhbakhsh, Biosens. Bioelectron. 122, 263 (2018)

    CAS  PubMed  Google Scholar 

  6. W.S. Darwish, E.A. Eldaly, M.T. El-Abbasy et al., Jpn. J. Vet. Res. 61, S13 (2013)

    PubMed  Google Scholar 

  7. C.Y. Liu, Y.Y. Han, P.H. Shih et al., Science Reports 6, 23375 (2016)

    CAS  Google Scholar 

  8. H.H. Chung, J.B. Lee, Y.H. Chung, K.G. Lee, Food Chem. 113, 29 (2009)

    Google Scholar 

  9. Z. Liu, Y. Zhong, Y. Hu et al., Food Chem. 270, 573 (2019)

    CAS  PubMed  Google Scholar 

  10. Q. Wang, W.M. Zhao, Sens. Actuators B 269, 238 (2018)

    CAS  Google Scholar 

  11. M. Kamal, R. Karoui, LWT Food Sci. Technol. 79, 586 (2017)

    CAS  Google Scholar 

  12. L. Kantiani, M. Farré, D. Barceló, TrAC Trends Anal. Chem. 28, 729 (2009)

    CAS  Google Scholar 

  13. S. Aytenfsu, G. Mamo, B. Kebede, J. Nutr. Food Sci. 6, 4 (2016)

    Google Scholar 

  14. M. Tumini, O.G. Nagel, R.L. Althaus, J. Dairy Res. 82, 248 (2015)

    CAS  PubMed  Google Scholar 

  15. M. Kamal, R. Karoui, Trends Food Sci. Technol. 46, 27 (2015)

    CAS  Google Scholar 

  16. M. Ntakatsane, P. Chen, J. Liu et al., Food Meas. 14, 1892 (2020)

    Google Scholar 

  17. M. Tumini, O.G. Nagel, R.L. Althaus, Rev. Argent Microbiol. 51, 345 (2019)

    PubMed  Google Scholar 

  18. M.G. Pikkemaat, M.L.B.A. Rapallini, S.O. Van Dijk, J.W.A. Elferink, Anal. Chim. Acta 637, 298 (2009)

    CAS  PubMed  Google Scholar 

  19. R. Romero, S. Van Weyenberg, M.P. Molina, W. Reybroeck, Int. Dairy J. 62, 39 (2016)

    CAS  Google Scholar 

  20. M.C. Beltrán, T. Romeo, R.L. Althaus, M.P. Molina, J. Dairy Sci. 96, 2737 (2013)

    PubMed  Google Scholar 

  21. R. Parthasarathy, C.E. Monette, S. Bracero, M.S. Saha, FEMS Microbiol. Ecol. 94, fiy105 (2018)

    CAS  Google Scholar 

  22. Q. Wu, Q. Zhu, Y. Liu et al., J. Dairy Sci. 102, 10825 (2019)

    CAS  PubMed  Google Scholar 

  23. I. Kukurova, B. Hozova, J. Food Nutr. Res. 46, 9 (2007)

    CAS  Google Scholar 

  24. R.M. Kalunke, G. Grasso, R. D'Ovidio, R. Dragone, C. Frazzoli, Microchem. J. 136, 128 (2018)

    CAS  Google Scholar 

  25. Q. Wu, S. Peng, Q. Liu, et al., Front. Microbiol. 10 (2019)

  26. P. Sun, Y. Liu, J. Sha et al., Biosens. Bioelectron. 26, 1993 (2011)

    CAS  PubMed  Google Scholar 

  27. F. Deiss, M.E. Funes-Huacca, J. Bal, K.F. Tjhung, R. Derda, Lab Chip 14, 167 (2014)

    CAS  PubMed  Google Scholar 

  28. M. Ntakatsane, P. Chen, J. Liu et al., Food Measure 14, 2087 (2020)

    Google Scholar 

  29. D. Ren, P. Chen, Y. Wang et al., LWT Food Sci. Technol. 82, 335 (2017)

    CAS  Google Scholar 

  30. L. Xu, P. Chen, T. Liu et al., LWT Food Sci. Technol. 117, 108687 (2020)

    CAS  Google Scholar 

  31. J.N. Eloff, BMC Complement. Alter. Med. 19, 106 (2019)

    Google Scholar 

  32. O.G. Nagel, M.P. Molina, J.C. Basίlico et al., Lett. Appl. Microbiol. 48, 744 (2009)

    CAS  PubMed  Google Scholar 

  33. M. Tumini, O. Nagel, M.P. Molina, R. Althaus, Int. Dairy J. 64, 9 (2017)

    CAS  Google Scholar 

  34. S.D. Sarker, L. Nahar, Y. Kumarasamy, Methods 42, 321 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. R. Saginur, M. StDenis, W. Ferris et al., Antimicrob. Agents Chemother. 50, 55 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. European Commission, OJ 1, L15 (2010)

  37. R.L. Althaus, A. Torres, A. Montero, S. Balach, M.P. Molina, J. Dairy Sci. 86, 457 (2003)

    CAS  PubMed  Google Scholar 

  38. D. Chudobova, S. Dostalova, I. Blazkova et al., Int. J. Environ. Res. Public Health 11, 3233 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. F. Van den Driessche, G. Brackman, R. Swimberghe, P. Rigole, T. Coenye, Int. J. Antimicrob. Agents 49, 315 (2017)

    PubMed  Google Scholar 

  40. G.A. O'Toole, J. Vis. Exp. 47, 2437 (2011)

    Google Scholar 

  41. EUCAST of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), (2003) https://doi.org/10.1046/j.1469-0691.2003.00790.x

  42. N. Høiby, K. Henneberg, H. Wang et al., Int. J. Antimicrob. agents 53, 564 (2019)

    PubMed  Google Scholar 

  43. J.N. Eloff, Planta Med. 64, 711 (1998)

    CAS  PubMed  Google Scholar 

  44. E. Bidlas, T. Du, R.J. Lambert, Int. J. Food Microbiol. 126, 140 (2008)

    CAS  PubMed  Google Scholar 

  45. K.P. Smith, J.E. Kirby, Antimicrob. Agents Chemother. 62, e00433–e518 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  46. J. Karslake, J. Maltas, P. Brumm, K.B. Wood, PLoS Comput. Biol. 12, e1005098 (2016)

    PubMed  PubMed Central  Google Scholar 

  47. K.I. Udekwu, N. Parrish, P. Ankomah, F. Baquero, B.R. Levin, J. Antimicrob. Chemother. 63, 745 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. O.G. Nagel, M.C. Beltrán, M.P. Molina, R.L. Althaus, Small Ruminant Res. 102, 26 (2012)

    Google Scholar 

  49. O. Nagel, M.P. Molina, R. Althaus, Int. Dairy J. 32, 150 (2013)

    CAS  Google Scholar 

  50. K.E.R. Davies, S.J. Joseph, P.H. Janssen, Appl. Environ. Microbiol. 71, 826 (2005)

    Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from Jilin Provincial Science & Technology Development Plan under International Science and Technology Cooperation Project: Research on Rapid Detection Technology of Antibiotic Residues in Milk. (No.: 20200801072GH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntakatsane, M., Chen, P., Liu, J. et al. Optimization of microbiological plastic film test plate conditions for rapid detection of antibiotics in milk. Food Measure 14, 3473–3482 (2020). https://doi.org/10.1007/s11694-020-00576-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00576-0

Keywords

Navigation