Skip to main content

Advertisement

Log in

Thermodynamic Calculations of the Critical Points of the H2–CO2–CH4–CO–H2O System

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Knowledge of the stability limit and critical point of the H2–CO2–CH4–CO–H2O system is significant for the management and optimization of the gasification systems of organic substances in supercritical water. We report thermodynamic calculations of the stability limits and critical points of the H2–CO2–CH4–CO–H2O system based on the cubic equation of state. Prior to the calculations of the quinary system, phase equilibria of the H2–CO2 and CH4–C2H6 systems and critical points of the CO2–H2O system were calculated and compared with experimental data. The calculated temperature stability limit decreased as the mole fraction of H2 in the quinary system increased. The calculated critical point of the (0.50 H2 + 0.01 CO2 + 0.02 CH4 + 0.02 CO + 0.45 H2O) mixture (in mole fractions) was at about 610 K and 300 MPa. The increase in the mole fraction of CO2 or H2O and the corresponding decrease of the mole fraction of H2 in the quinary system would make the critical temperature and pressure change significantly. The calculations indicated that all the pT states of the quinary system in our previous work were stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Bai, Y. Liu, Q. Wang, J. Zou, H. Zhang, H. Jin, X. Li, Renew. Energy 135, 32 (2019)

    Google Scholar 

  2. X. Zhao, H. Jin, Y. Chen, Z. Ge, Comput. Math. Appl. (2020). https://doi.org/10.1016/j.camwa.2019.11.012

    Article  Google Scholar 

  3. X. Zhao, H. Jin, Int. J. Heat Mass Transf. 133, 718 (2019)

    Google Scholar 

  4. H. Jin, H. Wang, Z. Wu, Z. Ren, Z. Ou, Renew. Energy 138, 11 (2019)

    Google Scholar 

  5. S. Cheng, F. Shang, W. Ma, H. Jin, N. Sakoda, X. Zhang, L. Guo, J. Chem. Eng. Data 64, 1693 (2019)

    Google Scholar 

  6. S. Cheng, F. Shang, W. Ma, H. Jin, N. Sakoda, X. Zhang, L. Guo, J. Chem. Eng. Data 64, 4024 (2019)

    Google Scholar 

  7. X. Yang, J. Xu, S. Wu, M. Yu, B. Hu, B. Cao, J. Li, Int. J. Hydrog. Energy 43, 10980 (2018)

    Google Scholar 

  8. Y. Liu, W. Hong, B. Cao, Energy 188, 116091 (2020)

    Google Scholar 

  9. Y. Liu, B. Cao, Int. J. Hydrog. Energy 45, 4297 (2020)

    Google Scholar 

  10. X. Yang, Y. Feng, J. Jin, Y. Liu, B. Cao, J. Mol. Liq. 299, 112133 (2020)

    Google Scholar 

  11. X. Yang, C. Duan, J. Xu, Y. Liu, B. Cao, Int. J. Heat Mass Transf. 135, 413 (2019)

    Google Scholar 

  12. S. Cheng, F. Shang, W. Ma, H. Jin, N. Sakoda, X. Zhang, L. Guo, J. Chem. Eng. Data (2020). https://doi.org/10.1021/acs.jced.0c00176

    Article  Google Scholar 

  13. X. Yang, Y. Feng, J. Xu, J. Jin, Y. Liu, B. Cao, Appl. Therm. Eng. 162, 114228 (2019)

    Google Scholar 

  14. A. Baiker, Chem. Rev. 99, 453 (1999)

    Google Scholar 

  15. P.E. Savage, S. Gopalan, T.I. Mizan, C.J. Martino, E.E. Brock, AIChE J. 41, 1723 (1995)

    Google Scholar 

  16. M.J. Burk, S. Feng, M.F. Gross, W. Tumas, J. Am. Chem. Soc. 117, 8277 (1995)

    Google Scholar 

  17. C.Y. Tsang, W.B. Streett, Chem. Eng. Sci. 36, 993 (1981)

    Google Scholar 

  18. C.Y. Tsang, P. Clancy, J.C.G. Galado, W.B. Streett, Chem. Eng. Commun. 6, 365 (1980)

    Google Scholar 

  19. C.Y. Tsang, W.B. Streett, Fluid Phase Equilib. 6, 261 (1981)

    Google Scholar 

  20. T.M. Seward, E.U. Franck, Ber. Bunsenges. Phys. Chem. 85, 2 (1981)

    Google Scholar 

  21. H.G. Donnelly, D.L. Katz, Ind. Eng. Chem. 46, 511 (1954)

    Google Scholar 

  22. K. Tödheide, E.U. Franck, Z. Phys. Chem. 37, 387 (1963)

    Google Scholar 

  23. S. Takenouchi, G.C. Kennedy, Am. J. Sci. 262, 1055 (1964)

    ADS  Google Scholar 

  24. D. Chokappa, P. Clancy, W.B. Streett, U.K. Deiters, A. Heintz, Chem. Eng. Sci. 40, 1831 (1985)

    Google Scholar 

  25. N. Sakoda, M. Kohno, Y. Takata, J. Therm. Sci. Technol. 8, 603 (2013)

    Google Scholar 

  26. J.W. Qian, J.N. Jaubert, R. Privat, J. Supercrit. Fluids 75, 58 (2013)

    Google Scholar 

  27. T. Endo, D. Arai, M. Uematsu, B-hen 59, 529 (1993)

    Google Scholar 

  28. M.L. Michelsen, Fluid Phase Equilib. 9, 1 (1982)

    Google Scholar 

  29. M.L. Michelsen, Fluid Phase Equilib. 9, 21 (1982)

    Google Scholar 

  30. G. Soave, Chem. Eng. Sci. 27, 1197 (1972)

    Google Scholar 

  31. P.J. Mohr, D.B. Newell, B.N. Taylor, J. Phys. Chem. Ref. Data 45, 043102 (2016)

    ADS  Google Scholar 

  32. D.Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fund. 15, 59 (1976)

    Google Scholar 

  33. J. Meija, T.B. Coplen, M. Berglund, W.A. Brand, P. De Bièvre, M. Gröning, N.E. Holden, J. Irrgeher, R.D. Loss, T. Walczyk, T. Prohaska, Pure Appl. Chem. 88, 265 (2016)

    Google Scholar 

  34. I. Martinez, Properties of gases. http://webserver.dmt.upm.es/~isidoro/dat1/eGAS.pdf. Accessed 10 Nov 2017

  35. B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids, 5th edn. (McGraw-Hill: New York, 2001) Appendix A, Section A, pp. A.5–A.19

  36. J.W. Leachman, R.T. Jacobsen, S.G. Penoncello, E.W. Lemmon, J. Phys. Chem. Ref. Data 38, 721 (2009)

    ADS  Google Scholar 

  37. R. Span, W. Wagner, J. Phys. Chem. Ref. Data 25, 1509 (1996)

    ADS  Google Scholar 

  38. U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data 20, 1061 (1991)

    ADS  Google Scholar 

  39. R.D. Goodwin, J. Phys. Chem. Ref. Data 14, 849 (1985)

    ADS  Google Scholar 

  40. W. Wagner, A. Pruss, J. Phys. Chem. Ref. Data 31, 387 (2002)

    ADS  Google Scholar 

  41. D. Bücker, W. Wagner, J. Phys. Chem. Ref. Data 35, 205 (2006)

    ADS  Google Scholar 

  42. A. Heintz, W.B. Streett, Bunsenges. Phys. Chem. 87, 298 (1983)

    Google Scholar 

  43. M.L. Michelsen, Fluid Phase Equilib. 4, 1 (1980)

    Google Scholar 

  44. R.A. Heidemann, A.M. Khalil, AIChE J. 26, 769 (1980)

    MathSciNet  Google Scholar 

  45. M.L. Michelsen, R.A. Heidemann, AIChE J. 27, 521 (1981)

    Google Scholar 

  46. M. Ruhemann, Proc. R. Soc. A 171, 121 (1939)

    ADS  Google Scholar 

  47. J. Davalos, W.R. Anderson, R.E. Phelps, A.J. Kidnay, J. Chem. Eng. Data 21, 81 (1976)

    Google Scholar 

  48. M.K. Gupta, G.C. Gardner, M.J. Hegarty, A.J. Kidnay, J. Chem. Eng. Data 25, 313 (1980)

    Google Scholar 

  49. I. Wichterle, R. Kobayashi, J. Chem. Eng. Data 17, 9 (1972)

    Google Scholar 

  50. C. Zhu, X. Liu, S. Xue, M. He, J. Chem. Eng. Data (2020). https://doi.org/10.1021/acs.jced.0c00236

    Article  Google Scholar 

  51. C.P. Hicks, C.L. Young, Chem. Rev. 75, 119 (1975)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Key R&D Program of China (Contract no. 2016YFB0600100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Ma, W., Sakoda, N. et al. Thermodynamic Calculations of the Critical Points of the H2–CO2–CH4–CO–H2O System. Int J Thermophys 41, 141 (2020). https://doi.org/10.1007/s10765-020-02725-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02725-5

Keywords

Navigation