Skip to main content
Log in

Temperature-dependent resistive switching for gold/poly(methyl methacrylate)/heavily doped p-type Si/indium devices by incorporating black phosphorus into poly(methyl methacrylate)

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This study determines the effect of incorporating black phosphorus (BP) nanosheets into poly(methyl methacrylate) (PMMA) on resistive switching (RS) mechanisms using the temperature-dependent current–voltage characteristics of gold/PMMA:BP/heavily doped p-type Si (p+-Si)/indium devices. A gold/PMMA:BP/p+-Si/indium device exhibits RS behavior, but a gold/PMMA/p+-Si/indium device exhibits set/reset–free current–voltage characteristics. The current in gold/PMMA:BP/p+-Si/indium devices is limited by ohmic conduction, the space charge or filled trap. Incorporating BP into PMMA results in a significant increase in the trap density for a PMMA:BP film, which increases the RS performance for gold/PMMA:BP/p+-Si/indium devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J Mangalam, S Agarwal, A N Resmi, M Sundararajan and K B Jinesh Org. Electron. 29 33 (2016)

    Google Scholar 

  2. Y Lin, H Y Xu, Z Q Wang, T Cong, W Z Liu, H L Ma and Y C Liu Appl. Phys. Lett. 110 193503 (2017)

    ADS  Google Scholar 

  3. S T Han, L Hu, X Wang, Y Zhou, Y J Zeng, S Ruan, C Pan and Z Peng Adv. Sci. 2017 1600435 (2017)

    Google Scholar 

  4. C C Hung and Y J Lin Chem. Phys. Lett. 692 388 (2018)

    ADS  Google Scholar 

  5. Y Liu, F Li, Z Chen, T Guo, C Wu and T W Kim Vacuum 130 109 (2016)

    ADS  Google Scholar 

  6. I J Baek and W J Cho Solid State Electronics 140 129 (2018)

    ADS  Google Scholar 

  7. Y J Yang, M M Rehman, G U Siddiqui, K H Na and K H Choi Current Applied Physics 17 1733 (2017)

    ADS  Google Scholar 

  8. T N T A Aziz, A B Rosli, M M Yusoff, S H Herman and Z Zulkifli Materials Science in Semiconductor Processing 89 68 (2019)

    Google Scholar 

  9. X Yang, Z Ren, F Pan, B Wu, P Li and G D Zhou J. Alloys Compd. 802 546 (2019)

    Google Scholar 

  10. G D Zhou, L H Xiao, S J Zhang, B Wu, X Liu and A K Zhou J. Alloys Compd. 722 753 (2017)

    Google Scholar 

  11. G D Zhou, B Wu, X Liu, P Li, S Zhang, B Sun and A Zhou Phys. Chem. Chem. Phys. 18 6509 (2016)

    Google Scholar 

  12. G Zhou, B Sun, Z Ren, L Wang, C Xu, B Wu, P Li, Y Yao and S Duan Chem. Commun. 55 9915 (2019)

    Google Scholar 

  13. S Zhu, B Sun, S Ranjan, X. Zhu, G Zhou, H Zhao, S. Mao, H Wang, Y Zhao, and G Fu APL Mater. 7 081117 (2019)

    ADS  Google Scholar 

  14. P Siebeneichera, H Kleemann, K Leo and B Lüssem Appl. Phys. Lett. 100 193301 (2012)

    ADS  Google Scholar 

  15. B Hwang and J S Lee Nanoscale 10 8578 (2018)

    Google Scholar 

  16. J Xu, X Zhao, Z Wang, H Xu, J Hu, J Ma and Y Liu Small 15 1803970 (2019)

    Google Scholar 

  17. G D Zhou, Y Q Yao, Z S Lu, X D Yang, J J Han, G Wang, Q Liu and Q L Song Nanotechnology 28 425202 (2017)

    Google Scholar 

  18. B Sun, L Wei, H Li, X Jia, J Wu and P Chen J. Mater. Chem. C 3 12149 (2015)

    Google Scholar 

  19. M V Jacob, D Taguchi, M Iwamoto, K Bazaka and R S Rawat Carbon 112 111 (2017)

    Google Scholar 

  20. X Y Xu, Z Y Yin, C X Xu, J Dai and J G Hu Appl. Phys. Lett. 104 033504 (2014)

    ADS  Google Scholar 

  21. C L Wu and Y J Lin Indian Journal of Physic 92 1533 (2018)

    ADS  Google Scholar 

  22. Y Cai, G Zhang and Y W Zhang Scientific Reports 4 6677 (2014)

    ADS  Google Scholar 

  23. T Takahashi, H Tokailin, S Suzuki, T Sagawa and I Shirotani Phys. Rev. B 29 1105 (1984)

    ADS  Google Scholar 

  24. L Li, Y Yu, G J Ye, Q Ge, X Ou, H Wu, D Feng, X H Chen and Y Zhang Nature Nanotechnology 9 372 (2014)

    ADS  Google Scholar 

  25. Y C Bae, A R Lee, J S Kwak, H Im and J P Hong Current Applied Physics 11 e66 (2011)

    ADS  Google Scholar 

  26. Y Zhang, N Deng, H Wu, Z Yu, J Zhang and H Qian Appl. Phys. Lett. 105 063508 (2014)

    ADS  Google Scholar 

  27. S Choi, Y Yang and W. Lu Nanoscale 6 400 (2014)

    ADS  Google Scholar 

  28. C Mannequin, A Delamoreanu, L Latu-Romain, V Jousseaume, H Grampeix, S David, C Rabot, A Zenasni, C Vallee and P Gonon Microelectronic Engineering 161 82 (2016)

    Google Scholar 

  29. B Sun, X Zhang, G Zhou, T Yu, S Mao, S Zhu, Y Zhao and Y Xia Journal of Colloid and Interface Science 520 19 (2018)

    ADS  Google Scholar 

  30. P Zheng, B Sun, Y Chen, H Elshekh, T Yu, S Mao, S Zhu, H Wang, Y Zhao and Z Yu Applied Materials Today 14 21 (2019)

    Google Scholar 

  31. G Zhou, B Sun, A Zhou, B Wu and H Huang Current Applied Physics 17 235 (2017)

    ADS  Google Scholar 

  32. S Yu Resistive Random Access Memory (RRAM) (Williston: Morgan & Claypool Publishers) (2016)

    Google Scholar 

  33. F Yan, Y Hong and H L W Chan Appl. Phys. Lett. 92 243301 (2008)

    ADS  Google Scholar 

  34. K H Park, J H Jung, F Li, D I Son and T W Kim Appl. Phys. Lett. 93 132104 (2008)

    ADS  Google Scholar 

  35. J Y Lee and Y J Lin Synthetic Metals 212 180 (2016)

    Google Scholar 

  36. T Guo, T Tan and Z Liu J. Mater. Sci.: Mater. Electron. 26 6699 (2015)

    Google Scholar 

  37. Z Xu, M Gao, L Yu, L Lu, X Xu and Y Jiang ACS Appl. Mater. Interfaces 6 17823 (2014)

    Google Scholar 

  38. J X Shen, H Q Qian, G F Wang, Y H An, P G Li, Y Zhang, S L Wang, B Y Chen and W H Tang Appl. Phys. A 111 303 (2013)

    ADS  Google Scholar 

  39. J Chen, L Xu, J Lin, Y Geng, L Wang and D Ma Appl. Phys. Lett. 89 083514 (2006)

    ADS  Google Scholar 

  40. D I Son, C H You, J H Jung and T W Kim Appl. Phys. Lett. 97 013304 (2010)

    ADS  Google Scholar 

  41. Y J Lin, H Z Lin, N H Yan, Z H Tang and H C Chang Appl. Phys. A 122 974 (2016)

    ADS  Google Scholar 

  42. P C Kao, C C Liu and T Y Li Org. Electron. 21 203 (2015)

    Google Scholar 

  43. P K Sarkar, S Bhattacharjee, M Prajapat and A Roy RSC Adv. 5 105661 (2015)

    ADS  Google Scholar 

  44. D A Neamen, Semiconductor Physics and Devices Third Edition (New York: McGraw-Hill) (2003)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Ministry of Science and Technology, Taiwan (Contract No. 106-2112-M-018-001-MY3) in the form of grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yow-Jon Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, TH., Chen, MY., Huang, WS. et al. Temperature-dependent resistive switching for gold/poly(methyl methacrylate)/heavily doped p-type Si/indium devices by incorporating black phosphorus into poly(methyl methacrylate). Indian J Phys 95, 1351–1356 (2021). https://doi.org/10.1007/s12648-020-01818-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01818-z

Keywords

Navigation