Skip to main content
Log in

An iso-parametric \(\pmb {\mathrm {G}^1}\)-conforming finite element for the nonlinear analysis of Kirchhoff rod. Part I: the 2D case

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A geometrically exact nonlinear iso-parametric \(\mathrm {G}^1\)-conforming finite element formulation for the analysis of Kirchhoff rods, based on the cubic Bézier curve interpolation, is presented. In this work, the formulation is restricted to the planar 2D case. Introducing the \(\mathrm {G}^1\)-map, the interpolation preserves the continuity requirement during the deformation process of the rod. In this way, the \(\mathrm {G}^1\)-conformity is implicitly accounted at the element formulation level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cottrell, A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley (2009)

  2. Greco, L., Cuomo, M.: B-spline interpolation of Kirchhoff–Love space rods. Comput. Methods Appl. Mech. Eng. 256, 251–269 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  3. Greco, L., Cuomo, M.: An implicit \(G^1\) multi patch B-spline interpolation for Kirchhoff–Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    ADS  MATH  Google Scholar 

  4. Bauer, A.M., Breitenberger, M., Philipp, B., Wüchner, R., Blatzinger, K.-U.: Nonlinear isogeometric spatial Bernoulli beam. Comput. Methods Appl. Mech. Eng. 303, 101–127 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Gerald, F.: Curves and Surfaces for CAGD: A Practical Guide. The Morgan Kaufmann Series in Computer Graphics. Morgan Kaufmann, 5 edn (2001)

  6. Barsky, B.A., DeRose, T.D.: Geometric continuity of parametric curves: three equivalent characterizations. IEEE Comput. Graph. Appl. 9(6), 60–68 (1989)

    Google Scholar 

  7. Hohmeyer, M.E., Barsky, B.A.: Rational continuity: parametric, geometric, and Frenet frame continuity of rational curves. ACM Trans. Graph. 8(4), 335–359 (1989)

    MATH  Google Scholar 

  8. Armero, F., Valverde., J.: Invariant Hermitian finite element for thin Kirchhoff rods. I: the linear plane case. Comput. Methods Appl. Mech. Eng. 213–216, 427–457 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Generalized Continua from the Theory to Engineering Applications: volume 541 of CISM International Centre for Mechanical Sciences (Courses and Lectures), chapter Cosserat-Type Rods. Springer, Vienna (2013)

  10. Altenbach, H., Bîrsan, M., Eremeyev, V.A.: On a thermodynamic theory of rods with two temperature fields. Acta Mech. 223(8), 1583–1596 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58, 79–116 (1986)

    ADS  MATH  Google Scholar 

  12. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49, 55–70 (1985)

    ADS  MATH  Google Scholar 

  13. Bouclier, R., Elguedj, T., Coumbescure, A.: Locking free isogeometric formulations of curved thick beams. Comput. Methods Appl. Mech. Eng. 245–246, 144–162 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Cazzani, A., Malagú, M., Turco, E.: Isogeometric analysis of plane curved beams. Math. Mech. Solids 21(5), 562–577 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Cazzani, A., Malagú, M., Turco, E., Stochino, F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21(2), 182–209 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Greco, L., Cuomo, M., Contrafatto, L., Gazzo, S.: An efficient blended mixed B-spline formulation for removing membrane locking in plane curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 324, 476–511 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Maurin, F., Dedé, L., Spadoni, A.: Isogeometric rotation-free analysis of planar extensible-elastica for static and dynamic applications. Nonlinear Dyn. 81, 77–96 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Greco, L., Cuomo, M.: An isogeometric implicit \(G^{1}\) mixed finite element for Kirchhoff space rods. Comput. Methods Appl. Mech. Eng. 298, 325–349 (2016)

    ADS  MATH  Google Scholar 

  19. Weeger, O., Yeung, S.-K., Dunn, M.L.: Isogeometric collocation methods for cosserat rods and rod structures. Comput. Methods Appl. Mech. Eng. 316, 100–122 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Marino, E.: Isogeometric collocation for three-dimensional geometrically exact shear-deformable beams. Comput. Methods Appl. Mech. Eng. 307, 383–410 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Marino, E.: Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature. Comput. Methods Appl. Mech. Eng. 324, 546–572 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Maurin, F., Greco, F., Dedoncker, S., Desmet, W.: Isogeometric analysis for nonlinear planar Kirchhoff rods: weightedresidual formulation and collocation of the strong form. Comput. Methods Appl. Mech. Eng. 340, 1023–104 (2019)

    ADS  MATH  Google Scholar 

  23. Turco, E.: Discrete is it enough? The revival of Piola–Hencky keynotes to analyze three-dimensional elastica. Continuum Mech. Thermodyn. 30(5), 1039–1057 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Giorgio, I., Del Vescovo, D.: Energy-based trajectory tracking and vibration control for multi-link highly flexible manipulators. Math. Mech. Complex Syst. 7(2), 159–174 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Giorgio, I., Del Vescovo, D.: Non-linear lumped-parameter modeling of planar multi-link manipulators with highly flexible arms. Robotics (2018). https://doi.org/10.3390/robotics7040060

    Article  Google Scholar 

  26. Baroudi, D., Giorgio, I., Battista, A., Turco, E., Igumnov, L.A.: Nonlinear dynamics of uniformly loaded elastica: experimental and numerical evidence of motion around curled stable equilibrium configurations. Zeitschrift für Angewandte Mathematik und Mechanik 99(7), e201800121 (2019)

    MathSciNet  Google Scholar 

  27. Spagnuolo, M., Andreaus, U.: A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Math. Mech. Solids 24(1), 258–280 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Grabovsky, Y., Truskinovsky, L.: The flip side of buckling. Continuum Mech. Thermodyn. 19, 211–243 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Cuomo, M.: Continuum model of microstructure induced softening for strain gradient materials. Math. Mech. Solids 24(8), 2374–2391 (2018)

    MathSciNet  Google Scholar 

  30. Cuomo, M.: Continuum damage model for strain gradient materials with applications to 1D examples. Continuum Mech. Thermodyn. 31(4), 969–987 (2019)

    ADS  MathSciNet  Google Scholar 

  31. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Google Scholar 

  32. Altenbach, H., Eremeyev, V.A.: On the constitutive equations of viscoelastic micropolar plates and shells of differential type. Math. Mech. Complex Syst. 3(3), 273–283 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Greco, L., Cuomo, M.: Consistent tangent operator for an exact Kirchhoff rod model. Continuum Mech. Thermodyn. 27, 861–877 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Thomas, D.C., Scott, M.A., Evans, J.A., Tew, K., Evans, E.J.: Bézier projection: a unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis. Comput. Methods Appl. Mech. Eng. 284, 55–105 (2015)

    ADS  MATH  Google Scholar 

  35. Simo, J.C.: The (symmetric) Hessian for geometrically non linear models in solids mechanics: intrinsic definition and geometric interpretation. Comput. Methods Appl. Mech. Eng. 96, 189–200 (1992)

    ADS  MATH  Google Scholar 

  36. Lo, S.H.: Geometrically nonlinear formulation of 3d finite strain beam element with large rotations. Comput. Struct. 44(1–2), 147–157 (1992)

    ADS  MATH  Google Scholar 

  37. DaDeppo, D.A., Schmidt, R.: Instability of clamped-hinged circular arches subjected to a point load. J. Appl. Mech. 42(4), 894–896 (1975)

    ADS  Google Scholar 

  38. Li, W., Ma, H., Gao, W.: Geometrically exact curved beam element using internal force field defined in deformed configuration. Int. J. Nonlinear Mech. 89, 116–126 (2017)

    ADS  Google Scholar 

  39. Leahu-Aluas, I., Abed-Meraim, F.: A proposed set of popular limit-point buckling benchmark problems. Struct. Eng. Mech. 38(6), 767–802 (2011)

    Google Scholar 

  40. Barchiesi, E., dell’Isola, F., Laudato, M., Placidi, L., Seppecher, P.: A 1D continuum model for beams with pantographic microstructure: asymptotic micro-macro identification and numerical results. In: Porubov, A., dell’Isola, F., Eremeyev, V. (eds.) Advances in Mechanics of Microstructured Media and Structures, vol. 87, pp. 43–77. Springer, Cham (2018)

    Google Scholar 

  41. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Barchiesi, E., Eugster, S.R., Placidi, L., dell’Isola, F.: Pantographic beam: a complete second gradient 1D-continuum in plane. Zeitschrift für angewandte Mathematik und Physik (2018). https://doi.org/10.1007/s00033-019-1181-4

    Article  MATH  Google Scholar 

  43. Barchiesi, E., Kakalo, S.: Variational asymptotic homogenization of beam-like square lattice structures. Math. Mech. Solids 20(10), 3295–3318 (2019)

    MathSciNet  Google Scholar 

  44. Barchiesi, E., Laudato, M., Di Cosmo, F.: Wave dispersion in non-linear pantographic beams. Mech. Res. Commun. 94, 128–132 (2018)

    Google Scholar 

  45. Giorgio, I., Corte, A.D., dell’Isola, F.: Dynamics of 1D nonlinear pantographic continua. Nonlinear Dyn. 88(1), 21–31 (2017)

    Google Scholar 

  46. Maurin, F., Greco, F., Desmet, W.: Isogeometric analysis for nonlinear planar pantographic lattice: discrete and continuum models. Continuum Mech. Thermodyn. 31, 1051–1064 (2019)

    ADS  MathSciNet  Google Scholar 

  47. Turco, E.: Numerically driven tuning of equilibrium paths for pantographic beams. Continuum Mech. Thermodyn. 31(6), 1941–1960 (2019)

    ADS  MathSciNet  Google Scholar 

  48. Eremeyev, V.A., Turco, E.: Enriched buckling for beam-lattice metamaterials. Mech. Res. Commun. 103, 103458 (2020). https://doi.org/10.1016/j.mechrescom.2019.103458

  49. dell’Isola, F., Seppecher, P., Alibert, J.J., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech. Thermodyn. 31, 851–884 (2019). https://doi.org/10.1007/s00161-018-0689-8

    Article  ADS  MathSciNet  Google Scholar 

  50. dell’Isola, F., Seppecher, P., Spagnuolo, M., et al.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mech. Thermodyn. 31, 1231–1282 (2019). https://doi.org/10.1007/s00161-019-00806-x

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Greco.

Additional information

Communicated by Holm Altenbach and Victor A. Eremeyev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greco, L. An iso-parametric \(\pmb {\mathrm {G}^1}\)-conforming finite element for the nonlinear analysis of Kirchhoff rod. Part I: the 2D case. Continuum Mech. Thermodyn. 32, 1473–1496 (2020). https://doi.org/10.1007/s00161-020-00861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00861-9

Keywords

Navigation