Skip to main content
Log in

Microstructure-based modelling of rubbing in polycrystalline honeycomb structures

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

A microstructure-based modelling approach was used to study the deformation behaviour of polycrystalline honeycomb structures under rubbing loading. Rubbing originates from the sliding contact between sealing surfaces in a gas turbine engine. As a stationary component of the sealing system, the honeycomb structure’s role is to prevent catastrophic failure of the rotating component. Therefore, normal forces and surface deformations of the honeycomb structure need to be minimised to limit the heat input into the rotating component. To achieve a detailed representation of the honeycomb material response, the constitutive behaviour of the employed nickel-based superalloys Hastelloy X and Haynes 214 was modelled with a crystal plasticity approach, utilising a finite element framework. Uniaxial tensile tests at relevant temperatures and strain rates resembling the rubbing allowed the identification of crucial model parameters. The simulative studies based on the unit cell of the honeycomb structure revealed that the normal forces and the surface deformations are strongly affected by the microstructural features (size and orientation of the grains) and the applied deformation rate. In addition, a significant amount of residual stresses could be found for the macroscopically unstressed state after cooling and unloading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from [27, 35]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alabort, E., Barba, D., Sulzer, S., Lißner, M., Petrinic, N., Reed, R.C.: Grain boundary properties of a nickel-based superalloy: characterisation and modelling. Acta Mater. 151, 377–394 (2018)

    Article  Google Scholar 

  2. Alabort, E., Reed, R.C., Barba, D.: Combined modelling and miniaturised characterisation of high-temperature forging in a nickel-based superalloy. Mater. Des. 160, 683–697 (2018)

    Article  Google Scholar 

  3. Böhm, H.: A short introduction to basic aspects of continuum micromechanics. ILSB report, Vienna University of Technology, vol. 206 (1998)

  4. Cordero, Z.C., Knight, B.E., Schuh, C.A.: Six decades of the Hall–Petch effect—a survey of grain-size strengthening studies on pure metals. Int. Mater. Rev. 62(8), 495–512 (2016)

    Article  Google Scholar 

  5. Dassault Systèmes: Abaqus 6.13 analysis user’s guide (2013)

  6. Dunne, F., Petrinic, N.: Introduction to Computational Plasticity. Oxford University Press, New York (2005)

    MATH  Google Scholar 

  7. Fillafer, A., Krempaszky, C., Werner, E.: On strain partitioning and micro-damage behavior of dual-phase steels. Mater. Sci. Eng. A 614, 180–192 (2014)

    Article  Google Scholar 

  8. Fischer, F., Werner, E., Knothe, K.: The surface temperature of a half-plane subjected to rolling/sliding contact with convection. J. Tribol. 122, 864–866 (2000)

    Article  Google Scholar 

  9. Fischer, T., Werner, E., Ulan kyzy, S., Munz, O.: Modeling the rubbing contact in honeycomb seals. Contin. Mech. Thermodyn. 30(2), 381–395 (2018)

    Article  ADS  Google Scholar 

  10. Fischer, T., Werner, E., Ulan kyzy, S., Munz, O.: Crystal plasticity modeling of polycrystalline Ni-base superalloy honeycombs under combined thermo-mechanical loading. Contin. Mech. Thermodyn. 31(3), 703–713 (2019)

    Article  ADS  Google Scholar 

  11. Frederick, C., Armstrong, P.: A mathematical representation of the multiaxial Bauschinger effect. G.E.G.B. report RD/B/N, vol. 731 (1966)

  12. Haynes International, I.: Hastelloy X alloy (UNS N06002). High-temperature alloys (1997)

  13. Haynes International, I.: Haynes 214 alloy (UNS N07214). High-temperature alloys (2008)

  14. Hennessey, C., Castelluccio, G.M., McDowell, D.L.: Sensitivity of polycrystal plasticity to slip system kinematic hardening laws for Al 7075-T6. Mater. Sci. Eng. A 687, 241–248 (2017)

    Article  Google Scholar 

  15. Hutchinson, J.W.: Bounds and self-consistent estimates for creep of polycrystalline materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 348(1652), 101–127 (1976)

    MATH  ADS  Google Scholar 

  16. Kalidindi, S.R.: Incorporation of deformation twinning in crystal plasticity models. J. Mech. Phys. Solids 46(2), 267–271, 273–290 (1998)

  17. Kalpakjian, S., Schmid, S.R., Werner, E.: Werkstofftechnik. Pearson Studium, München (2011)

    Google Scholar 

  18. Kouznetsova, V.: Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, Technical University of Eindhoven (2002)

  19. Meier, F.: Influence of the aluminum-microstructure on the damage behavior of integrated circuits. Ph.D. thesis, Technical University of Munich (2017)

  20. Meier, F., Schwarz, C., Werner, E.: Crystal-plasticity based thermo-mechanical modeling of Al-components in integrated circuits. Comput. Mater. Sci. 94, 122–131 (2014)

    Article  Google Scholar 

  21. Mohr, D.: Multi-scale finite-strain plasticity model for stable metallic honeycombs incorporating microstructural evolution. Int. J. Plast. 22, 1899–1923 (2006)

    Article  Google Scholar 

  22. Munz, O., Pychynski, T., Schwitzke, C., Bauer, H.J.: Continued experimental study on the friction contact between a labyrinth seal fin and a honeycomb stator: slanted position. Aerospace 5(3), 82 (2018)

    Article  Google Scholar 

  23. Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Res. Int. 174, 25–28 (1953)

    Google Scholar 

  24. Quey, R., Dawson, P., Barbe, F.: Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing. Comput. Methods Appl. Mech. Eng. 200, 1729–1745 (2011)

    Article  ADS  Google Scholar 

  25. Quey, R., Renversade, L.: Optimal polyhedral description of 3D polycrystals: method and application to statistical and synchrotron X-ray diffraction data. Comput. Methods Appl. Mech. Eng. 330, 308–333 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  26. Reed, R.C.: The Superalloys: Fundamentals and Applications. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  27. Rossmann, A.: Die Sicherheit von Turbo-Flugtriebwerken: Reibverschleiß, Anstreifen und Spalthaltung, Labyrinthdichtungen, Bürstendichtungen, Containment, Feuer und Explosionen. Turbo Consult, Karlsfeld (2000)

    Google Scholar 

  28. Rossmann, A.: Probleme der Maschinenelemente erkennen, verhüten und lösen—Band 2B: Versagensformen, typische Schadensbilder, Mechanismen, Ursachen von Elementen durchströmter Systeme: Berührende und berührungsfreie Dichtungen, Rohrleitungen, Schlauchleitungen. Turbo Consult, Karlsfeld (2010)

  29. Roters, F., Diehl, M., Shanthraj, P., Eisenlohr, P., Reuber, C., Wong, S., Ma, D., Jia, N., Kok, P., Fujita, N., Ebrahimi, A., Hochrainer, T., Grilli, N., Janssens, K., Stricker, M., Weygand, D., Meier, F., Werner, E., Fabritius, H.O., Nikolov, S., Friak, M., Raabe, D.: Damask—the Düsseldorf advanced material simulation kit for modelling multi-physics crystal plasticity, damage and thermal phenomena from the single crystal up to the component scale. Comput. Mater. Sci. 158, 420–478 (2019)

    Article  Google Scholar 

  30. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D., Bieler, T., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: therory, experiments, applications. Acta Mater. 58(4), 1152–1211 (2010)

    Article  Google Scholar 

  31. Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D., Diehl, M., Raabe, D.: Damask: the Düsseldorf advanced material simulation kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 3, 3–10 (2012)

    Article  Google Scholar 

  32. Rycroft, C.H.: Voro++: a three-dimensional Voronoi cell library in C++. Chaos 19, 041111 (2009)

    Article  ADS  Google Scholar 

  33. Sedláček, R.: Finite Elemente in der Werkstoffmechanik. Verlag Dr. Hut, München (2009)

    Google Scholar 

  34. Smarsly, W., Zheng, N., Buchheim, C., Nindel, C., Silvestro, C., Sporer, D., Tuffs, M., Schreiber, K., Bomba, C.L., Anderson, O., Goehler, H., Simms, N., McColvin, G.: Advanced high temperature turbine seals materials and designs. Mater. Sci. Forum 492–493, 21–26 (2005)

    Article  Google Scholar 

  35. Sporer, D., Shiembob, L.: Alloy selection for honeycomb gas path seal systems. Proc. AMSE Turbo Expos. 4, 763–774 (2004)

    Google Scholar 

  36. Taxer, T., Schwarz, C., Smarsly, W., Werner, E.: A finite element approach to study the influence of cast pores on the mechanical properties of the Ni-base alloy MAR-M247. Mater. Sci. Eng. A 575, 144–151 (2013)

    Article  Google Scholar 

  37. Ulan kyzy, S., Völkl, R., Munz, O., Fischer, T., Glatzel, U.: The effect of brazing on microstructure of honeycomb liner material Hastelloy X. J. Mater. Eng. Perform. 28(4), 1909–1913 (2019)

    Article  Google Scholar 

  38. Varshni, Y.P.: Temperature dependence of the elastic constants. Phys. Rev. B 2(10), 3952–3958 (1970)

    Article  ADS  Google Scholar 

  39. von Kobylinski, J., Lawitzki, R., Hofmann, M., Krempaszky, C., Werner, E.: Micromechanical behaviour of Ni-based superalloys close to the yield point: a comparative study between neutron diffraction on different polycrystalline microstructures and crystal plasticity finite element modelling. Contin. Mech. Thermodyn. 31(3), 691–702 (2019)

    Article  ADS  Google Scholar 

  40. Werner, E., Siegmund, T., Weinhandl, H., Fischer, F.D.: Properties of random polycrystalline two-phase materials. Appl. Mech. Rev. 47(1S), 231–240 (1994)

    Article  ADS  Google Scholar 

  41. Werner, E., Wesenjak, R., Fillafer, A., Meier, F., Krempaszky, C.: Microstructure-based modelling of multiphase materials and complex structures. Contin. Mech. Thermodyn. 28(5), 1325–1346 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  42. Zhang, M., McDowell, D.L., Neu, R.W.: Microstructure sensitivity of fretting fatigue based on computational crystal plasticity. Tribol. Int. 42, 1286–1296 (2009)

    Article  Google Scholar 

  43. Zhang, M., Neu, R.W., McDowell, D.L.: Microstructure-sensitive modeling: application to fretting contacts. Int. J. Fatigue 31, 1397–1406 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the research project WE 2351/14-1 funded by the Deutsche Forschungsgemeinschaft (DFG). The authors are grateful to the Max Planck Institut für Eisenforschung (MPIE) in Düsseldorf for providing the flexible and easy-to-use multi-physics simulation kit DAMASK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Fischer.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, T., Ulan kyzy, S., Munz, O. et al. Microstructure-based modelling of rubbing in polycrystalline honeycomb structures. Continuum Mech. Thermodyn. 32, 1371–1383 (2020). https://doi.org/10.1007/s00161-019-00852-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00852-5

Keywords

Navigation