Skip to main content
Log in

Chiral metamaterial predicted by granular micromechanics: verified with 1D example synthesized using additive manufacturing

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Granular micromechanics approach (GMA) provides a predictive theory for granular material behavior by connecting the grain-scale interactions to continuum models. Here, we have used GMA to predict the closed-form expressions for elastic constants of macroscale chiral granular metamaterial. It is shown that for macroscale chirality, the grain-pair interactions must include coupling between normal and tangential deformations. We have designed such a grain-pair connection for physical realization and quantified with FE model. The verification of the prediction is then performed using a physical model of 1D bead string obtained by 3D printing. The behavior is also verified using a discrete model of 1D bead string.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abdoul-Anziz, H., Seppecher, P.: Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Complex Syst. 6, 213–250 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Alibert, J.-J., Seppecher, P., Dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Altenbach, H., Eremeyev, V.: Strain rate tensors and constitutive equations of inelastic micropolar materials. Int. J. Plast. 63, 3–17 (2014)

    Google Scholar 

  4. Auffray, N., Dirrenberger, J., Rosi, G.: A complete description of bi-dimensional anisotropic strain-gradient elasticity. Int. J. Solids Struct. 69, 195–206 (2015)

    Google Scholar 

  5. Bahaloo, H., Li, Y.: Micropolar modeling of auxetic chiral lattices with tunable internal rotation. J. Appl. Mech. 86, 041002 (2019)

    ADS  Google Scholar 

  6. Chen, Y., Liu, X., Hu, G., Sun, Q., Zheng, Q.: Micropolar continuum modelling of bi-dimensional tetrachiral lattices. Proc. R. Soc. A Math. Phys. Eng. Sci. 470, 20130734 (2014)

    ADS  Google Scholar 

  7. De Angelo, M., Placidi, L., Nejadsadeghi, N., Misra, A.: Non-standard Timoshenko beam model for chiral metamaterial: identification of stiffness parameters. Mech. Res. Commun. 103, 103462 (2019)

    Google Scholar 

  8. De Angelo, M., Spagnuolo, M., D’annibale, F., Pfaff, A., Hoschke, K., Misra, A., Dupuy, C., Peyre, P., Dirrenberger, J., Pawlikowski, M.: The macroscopic behavior of pantographic sheets depends mainly on their microstructure: experimental evidence and qualitative analysis of damage in metallic specimens. Contin. Mech. Thermodyn. 31, 1181–1203 (2019)

    ADS  Google Scholar 

  9. dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The Complete Works of Gabrio Piola: Volume I: Commented English Translation-English and Italian Edition. Springer, Berlin (2014)

    MATH  Google Scholar 

  10. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20, 887–928 (2015)

    MathSciNet  MATH  Google Scholar 

  11. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2185), 20150790 (2016)

    ADS  Google Scholar 

  12. dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., Gołaszewski, M., Rizzi, N., Boutin, C., Eremeyev, V.A., Misra, A., Placidi, L., Barchiesi, E., Greco, L., Cuomo, M., Cazzani, A., Corte, A.D., Battista, A., Scerrato, D., Eremeeva, I.Z., Rahali, Y., Ganghoffer, J.-F., Müller, W., Ganzosch, G., Spagnuolo, M., Pfaff, A., Barcz, K., Hoschke, K., Neggers, J., Hild, F.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. 31, 851–884 (2018)

    ADS  MathSciNet  Google Scholar 

  13. dell’Isola, F., Seppecher, P., Spagnuolo, M., Barchiesi, E., Hild, F., Lekszycki, T., Giorgio, I., Placidi, L., Andreaus, U., Cuomo, M.: Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Contin. Mech. Thermodyn. 31, 1231–1282 (2019)

    ADS  Google Scholar 

  14. Eremeyev, V.A.: On the material symmetry group for micromorphic media with applications to granular materials. Mech. Res. Commun. 94, 8–12 (2018)

    Google Scholar 

  15. Eringen, A.: Microcontinuum Field Theories I: Foundations and Solids, 1999. Springer, New York (1999)

    MATH  Google Scholar 

  16. Eugster, S.R., dell’Isola, F.: Exegesis of the Introduction and Sect. I from “Fundamentals of the Mechanics of Continua”** by E. Hellinger. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 97, 477–506 (2017)

    ADS  MathSciNet  Google Scholar 

  17. Eugster, S.R., Dell’Isola, F.: Exegesis of Sect. II and III. A from “Fundamentals of the Mechanics of Continua” by E. Hellinger. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 98, 31–68 (2018)

    ADS  MathSciNet  Google Scholar 

  18. Eugster, S.R., dell’Isola, F.: Exegesis of Sect. III. B from “Fundamentals of the Mechanics of Continua” by E. Hellinger. ZAMM J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 98, 69–105 (2018)

    ADS  MathSciNet  Google Scholar 

  19. Fernandez-Corbaton, I., Rockstuhl, C., Ziemke, P., Gumbsch, P., Albiez, A., Schwaiger, R., Frenzel, T., Kadic, M., Wegener, M.: New twists of 3D chiral metamaterials. Adv. Mater. 31, 1807742 (2019)

    Google Scholar 

  20. Frenzel, T., Kadic, M., Wegener, M.: Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017)

    ADS  Google Scholar 

  21. Germain, P.: Method of virtual power in continuum mechanics. 2. Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    MATH  Google Scholar 

  22. He, Q.-C., Zheng, Q.-S.: On the symmetries of 2D elastic and hyperelastic tensors. J. Elast. 43, 203–225 (1996)

    MATH  Google Scholar 

  23. Liu, X., Huang, G., Hu, G.: Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. J. Mech. Phys. Solids 60, 1907–1921 (2012)

    ADS  MathSciNet  Google Scholar 

  24. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  25. Misra, A.: Particle Kinematics in Sheared Rod Assemblies Physics of Dry Granular Media, pp. 261–266. Springer, Berlin (1998)

    Google Scholar 

  26. Misra, A., Chang, C.S.: Effective elastic moduli of heterogeneous granular solids. Int. J. Solids Struct. 30, 2547–2566 (1993)

    MATH  Google Scholar 

  27. Misra, A., Jiang, H.: Measured kinematic fields in the biaxial shear of granular materials. Comput. Geotech. 20, 267–285 (1997)

    Google Scholar 

  28. Misra, A., Lekszycki, T., Giorgio, I., Ganzosch, G., Müller, W.H., Dell’Isola, F.: Pantographic metamaterials show atypical Poynting effect reversal. Mech. Res. Commun. 89, 6–10 (2018a)

    Google Scholar 

  29. Misra, A., Nejadsadeghi, N.: Longitudinal and transverse elastic waves in 1D granular materials modeled as micromorphic continua. Wave Motion 90, 175–195 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Misra, A., Placidi, L., Turco, E.: Variational methods for discrete models of granular materials. In: Altenbach, H., Ochsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin (2018)

    Google Scholar 

  31. Misra, A., Placidi, L., Turco, E.: Variational methods for continuum models of granular materials. In: Altenbach, H., Ochsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Heidelberg (2019)

    Google Scholar 

  32. Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3, 285–308 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Misra, A., Poorsolhjouy, P.: Elastic behavior of 2D grain packing modeled as micromorphic media based on granular micromechanics. J. Eng. Mech. 143, C4016005 (2016a)

    Google Scholar 

  34. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28, 215–234 (2016b)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Misra, A., Poorsolhjouy, P.: Granular micromechanics model of anisotropic elasticity derived from Gibbs potential. Acta Mech. 227, 1393–1413 (2016c)

    MATH  Google Scholar 

  36. Misra, A., Poorsolhjouy, P.: Grain- and macro-scale kinematics for granular micromechanics based small deformation micromorphic continuum model. Mech. Res. Commun. 81, 1–6 (2017)

    Google Scholar 

  37. Nejadsadeghi, N., De Angelo, M., Drobnicki, R., Lekszycki, T., dell’Isola, F., Misra, A.: Parametric experimentation on pantographic unit cells reveals local extremum configuration. Exp. Mech. 59, 927–939 (2019a)

    Google Scholar 

  38. Nejadsadeghi, N., Misra, A.: Axially moving materials with granular microstructure. Int. J. Mech. Sci. 161, 105042 (2019a)

    Google Scholar 

  39. Nejadsadeghi, N., Misra, A.: Extended granular micromechanics approach: a micromorphic theory of degree n. Math.Mech. Solids, 25(2), 407–429 (2019)

  40. Nejadsadeghi, N., Placidi, L., Romeo, M., Misra, A.: Frequency band gaps in dielectric granular metamaterials modulated by electric field. Mech. Res. Commun. 95, 96–103 (2019b)

    Google Scholar 

  41. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T., Hui, D.: Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos. B Eng. 143, 172–196 (2018)

    Google Scholar 

  42. Oliveira, A.R.: D’Alembert: between Newtonian science and the Cartesian inheritance. Adv. Hist. Stud. 6, 128–144 (2017)

    Google Scholar 

  43. Poncelet, M., Somera, A., Morel, C., Jailin, C., Auffray, N.: An experimental evidence of the failure of Cauchy elasticity for the overall modeling of a non-centro-symmetric lattice under static loading. Int. J. Solids Struct. 147, 223–237 (2018)

    Google Scholar 

  44. Poorsolhjouy, P., Misra, A.: Granular micromechanics based continuum model for grain rotations and grain rotation waves. J. Mech. Phys. Solids 129, 244–260 (2019)

    ADS  MathSciNet  Google Scholar 

  45. Richefeu, V., Combe, G., Viggiani, G.: An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Geotech. Lett. 2, 113–118 (2012)

    Google Scholar 

  46. Sarikaya, M., Tamerler, C., Jen, A.K.-Y., Schulten, K., Baneyx, F.: Molecular biomimetics: nanotechnology through biology. Nat. Mater. 2, 577 (2003)

    ADS  Google Scholar 

  47. Seppecher, P., Alibert, J.-J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319, 012018 (2011)

    Google Scholar 

  48. Turco, E., dell’Isola, F., Misra, A.: A nonlinear Lagrangian particle model for grains assemblies including grain relative rotations. Int. J. Numer. Anal. Methods Geomech. 43, 1051–1079 (2019)

    Google Scholar 

  49. Wiech, J., Eremeyev, V.A., Giorgio, I.: Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following. Contin. Mech. Thermodyn. 30, 1091–1102 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the United States National Science Foundation Grant CMMI -1727433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Misra.

Additional information

Communicated by Holm Altenbach and Victor A. Eremeyev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A., Nejadsadeghi, N., De Angelo, M. et al. Chiral metamaterial predicted by granular micromechanics: verified with 1D example synthesized using additive manufacturing. Continuum Mech. Thermodyn. 32, 1497–1513 (2020). https://doi.org/10.1007/s00161-020-00862-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00862-8

Keywords

Navigation