Skip to main content
Log in

Optimal transport from a point-like source

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We present a dynamical interpretation of the Monge–Kantorovich theory in a stationary regime. This new principle, akin to the Fermat principle of geometric optics, captures the geodesic character of many distribution networks such as plant roots, river basins and the physiological transportation network of metabolites in living systems. Our general continuum framework allows us to map a previously proposed phenomenological principle into a stationary Monge optimization principle in the Kantorovich relaxed format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Do not confuse \(\rho \) with the \(\rho _0\) and \(\rho _1\) of the static case.

  2. Named often Lagrangian continuity equation.

  3. The symbols \(\pi ^{(x)}_\#\) and \(\pi ^{(y)}_\#\) denote the push-forward operators based on \(\pi ^{(x)},\, \pi ^{(y)}\), here acting on the measure \(\gamma (x,y)\) and obtaining \( \rho _1(x)\) and \( \rho _0(y)\), respectively.

  4. After World War II, this theory was rediscovered by G.B. Dantzig, who introduced the ‘simplex’ method.

  5. See (7) for \(\alpha =1\) and the gradient structure of the diffeomorphism for \(\alpha =2\).

  6. The power 2 in \(n^2\) of (22) is simply chosen in order that the formula (33) below has compliance with the eikonal equation of geometric optics, in particular, the Hamilton–Jacobi equation \( \parallel \nabla S \parallel =n\), see (46).

  7. In a related and allied topic, i.e., the diffusion and propagation of the slime mold, the Fick–Poiseuille constitutive law plays an important and meaningful role both in the discrete and in the continuous dynamical model, see [8, 11].

  8. The space of curves \( H^1_0 ([0,1];{\varOmega })\) is composed by the completion of the \(C^\infty \) curves by the norm \(\Vert h \Vert _{H^1}=\Vert h\Vert _{L^2}+\Vert \dot{h} \Vert _{L^2}\), null at the extremes: \( h(0)=0=h(1)\); Sobolev immersion theorem guarantees that \(H^1\subset C^0\).

References

  1. Banavar, J.R., Maritan, A., Rinaldo, A.: Size and form in efficient transportation networks. Nature 399, 130–132 (1999)

    Article  ADS  Google Scholar 

  2. West, G.B., Woodruff, W.H., Brown, J.H.: Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc. Nat. Acad. Sci. 99, 2473–2478 (2002)

    Article  ADS  Google Scholar 

  3. Kleiber, M.: Body size and metabolism. Hilgardia 6, 315–353 (1932)

    Article  Google Scholar 

  4. McMahon, T., Bonner, J.T.: On Size and Life, p. 255. Scientific American Books - W. H. Freeman & Co., New York (1983)

    Google Scholar 

  5. Dodds, P.S., Rothman, D.H., Weitz, J.S.: Re-examination of the 3/4-law of metabolism. J. Theor. Biol. 209, 9–27 (2001)

    Article  Google Scholar 

  6. Kolokotrones, T., et al.: Curvature in metabolic scaling. Nature 464, 753–756 (2010)

    Article  ADS  Google Scholar 

  7. Dreyer, O., Puzio, R.: Allometric scaling in animals and plants. J. Math. Biol. 43, 144–156 (2001)

    Article  MathSciNet  Google Scholar 

  8. Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. J. Theor. Biol. 244(4), 553 (2007)

    Article  MathSciNet  Google Scholar 

  9. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  10. Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. J. Theor. Biol. 309, 121–133 (2012)

    Article  MathSciNet  Google Scholar 

  11. Facca, E., Cardin, F., Putti, M.: Towards a stationary Monge–Kantorovich dynamics: the Physarum polycephalum experience. SIAM J. Appl. Math. 78(2), 651–676 (2018)

    Article  MathSciNet  Google Scholar 

  12. Villani, C.: Optimal Transport. Old and New. Grundlehren der Mathematischen Wissenschaften, vol. 338, p. xxii+973. Springer, Berlin (2009)

    MATH  Google Scholar 

  13. Santambrogio, F.: Optimal Transport for Applied Mathematicians. Calculus of Variations, PDEs, and Modeling. Progress in Nonlinear Differential Equations and their Applications, vol. 87. Birkhäuser, Cham (2015)

    MATH  Google Scholar 

  14. Vershik, A.M.: Long history of the Monge–Kantorovich transportation problem. Math. Intell. 35(4), 1–9 (2013)

    Article  MathSciNet  Google Scholar 

  15. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris, avec les Mémoires de Mathématique et de Physique pour la même année, pp. 666–704 (1781)

  16. Brenier, Y.: Extended Monge–Kantorovich theory. In: Optimal Transportation and Applications. Lecture Notes in Mathematical, vol. 1813, pp. 91-121. Springer, Berlin (2003)

  17. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Mem. Am. Math. Soc. 137(653), viii+66 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Evans, L.C.: Partial Differential Equations and Monge–Kantorovich Mass Transfer, Current Developments in Mathematics. International Press, Boston (1999)

    Google Scholar 

  19. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  Google Scholar 

  20. McCann, R.: Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11(3), 589–608 (2001)

    Article  MathSciNet  Google Scholar 

  21. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  Google Scholar 

  22. Ambrosio, L.: Lecture notes on optimal transport problems. In: Mathematical Aspects of Evolving Interfaces. Funchal 2000, Lecture Notes in Mathematics, vol. 1812. Springer, Berlin (2003)

  23. Buttazzo, G.: Evolution models for mass transportation problems. Milan J. Math. 80(1), 47–63 (2012)

    Article  MathSciNet  Google Scholar 

  24. Ambrosio, L., Pratelli, A.: Existence and stability results in the \(L^1\) theory of optimal transportation. In: Caffarelli, L.A., Salsa, S. (eds.) LNM 1813, pp. 123–160 (2003)

  25. Kantorovich, L.V.: On mass transportation. Dokl. Acad. Sci. USSR 37(7–8), 227–229 (1942). (in Russian)

    Google Scholar 

  26. Kantorovich, L.V.: Mathematical methods in the organization and planning of production. Reprint edition of the book, published in 1939, with introductory paper of L.V. Kantorovich. St. Petersburg, Publishing House of St. Petersburg University (2012)

  27. Rinaldo, A., et al.: On feasible optimality. Istit. Veneto Sci. Lett. Arti Atti Cl. Sci. Fis. Mat. Natur. 155, 57–69 (1996–1997)

  28. Facca, E., Cardin, F., Putti, M.: Physarum dynamics and optimal transport for basis pursuit. arXiv:1812.11782 (2018)

Download references

Acknowledgements

We are indebted to Andrea Rinaldo for stimulating discussions and ongoing collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Cardin.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: stationary continuity equation with production \(f^+\) and dissipation \(f^-\)

For any subset \( \varDelta \varOmega \subseteq \varOmega \) involved in the stationary motion \(x=x(t,y)\), the balance law reads:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\int _{x\in x({\varDelta \varOmega },t)}\rho (x)\mathrm{d}x=\int _{x\in x({\varDelta \varOmega },t)}(f^+ -f^-)(x)\mathrm{d}x. \end{aligned}$$
(41)

Denoting \(J(t,y)=\det \frac{\partial x}{\partial y}(t,y) \),

$$\begin{aligned}&\frac{\mathrm{d}}{\mathrm{d}t}\int _{y\in {\varDelta \varOmega }}\rho (x(t,y))J(t,y)\mathrm{d}y=\int _{y\in {\varDelta \varOmega }} (f^+ -f^-) (x(t,y))J(t,y)\mathrm{d}y \nonumber \\&\quad \int _{y\in {\varDelta \varOmega }}\Big [ \frac{\partial \rho }{\partial x}(x(t,y))\cdot \frac{\partial x}{\partial t}(t,y)J(t,y)+ \rho (x(t,y))\frac{\partial }{\partial t}J(y,t) \Big ]\mathrm{d}y \nonumber \\&\quad =\int _{y\in {\varDelta \varOmega }} (f^+ -f^-) (x(t,y))J(t,y)\mathrm{d}y. \end{aligned}$$
(42)

Recalling that

$$\begin{aligned} \frac{\partial }{\partial t}J(t,y)=J(t,y)\nabla \cdot v(t,x)\big |_{x=x(t,y)},\qquad v(t,x)=\frac{\partial x}{\partial t}(t,y)\big |_{y=y(t,x)}=v(x), \end{aligned}$$

we obtain, for any measurable \(\varDelta \varOmega \),

$$\begin{aligned} \int _{y\in {\varDelta \varOmega }}\Big [\nabla \cdot (\rho (x) v(x))-(f^+ -f^-)(x)\Big ]\big |_{x=x(y,t)}J(t,y)\mathrm{d}y=0, \end{aligned}$$
(43)

and therefore, under standard smoothness requirements, Eq. (13) does hold.

Appendix B: Fermat-like geometry for the networks

We consider a stationary scenario, in which the distribution of metabolites is independent of time.

Given the rate of local consumption, \(f^-(x)\ge 0,\ x\in {\varOmega }\), the ‘living system’ \({\varOmega }\) is characterized by a network of blood and/or lymphatic vasculature that carries the food metabolite, of density \( \rho (x)> 0\), from the source point \( x_0 \in \varOmega \) to every other point x precisely along channels (pipes), a transportation network, that, we will see as a theorem, is structured as geodesics of a suitable Riemannian metric.

\(f^-(x)\) generates, just as in geometric optics, a sort of refraction indexn(x) inducing a Riemann metric g:

$$\begin{aligned} n(x)=\breve{n}[f^-(\cdot )](x),\qquad g_{ij}(x)=n^2(x)\delta _{ij}. \end{aligned}$$
(44)

The ‘length’ function, from the source point \(x_0\) to x and generalizing \(L_X\) of [1], isFootnote 8

$$\begin{aligned} S(x_0,x):=\inf _{\begin{matrix} h(\cdot )\in H^1_0 ([0,1];{\varOmega })\\ \gamma (t):=x_0+t(x-x_0)+h(t) \end{matrix}} \int _0^1\sqrt{ g_{ij}(\gamma (t))\dot{\gamma }^i (t) \dot{\gamma }^j(t) }\mathrm{d}t. \end{aligned}$$
(45)

When the infimum in (45) is realized by the solutions of the Euler–Lagrange equation of the Lagrangian function

$$\begin{aligned} L(x,\dot{x})=\sqrt{ g_{ij}(x)\dot{x}^i \dot{x}^j }, \end{aligned}$$

we compute the differential of S with respect to x, which is the final point of \(\gamma \):

$$\begin{aligned} \frac{\partial S}{\partial x^l}= & {} \frac{\partial }{\partial x^l} \int _0^1\sqrt{ g_{ij}(\gamma (t))\dot{\gamma }^i (t) \dot{\gamma }^j(t) }\mathrm{d}t\Big |_{d\int _0^1 L=0}\\= & {} \int _0^1 \left( \frac{\partial L}{\partial x^l}t+\frac{\partial L}{\partial \dot{x}^l}\right) \mathrm{d}t\Big |_{d\int _0^1 L=0}\\= & {} \int _0^1 \frac{\mathrm{d}}{\mathrm{d}t}\left( \frac{\partial L}{\partial \dot{x}^l}t\right) \mathrm{d}t \Big |_{d\int _0^1 L=0} \\= & {} \frac{\partial L}{\partial \dot{x}^l}\Big |_{t=1}=:p_l=\frac{g_{lm}(x)\dot{\gamma }^m}{\sqrt{ g_{ij}(x)\dot{\gamma }^i \dot{\gamma }^j }}\qquad \qquad (x=\gamma (1),\ \ \ x_0=\gamma (0)). \end{aligned}$$

This implies that \(g^{-1}(x)(p,p)=1\), or

$$\begin{aligned} g^{-1}(x)(\nabla S(x),\nabla S(x))= 1. \end{aligned}$$

This is equivalent to

$$\begin{aligned} \parallel \nabla S(x)\parallel ^2 =n^2(x) \end{aligned}$$
(46)

that is, the function

$$\begin{aligned} x\longmapsto S(x)=S(x_0,x) \end{aligned}$$

solves the Hamilton–Jacobi equation (46), which is an eikonal-like equation and \(|\nabla S(x)|\) is the Euclidean norm of \(\nabla S(x)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardin, F., Banavar, J.R. & Maritan, A. Optimal transport from a point-like source. Continuum Mech. Thermodyn. 32, 1325–1335 (2020). https://doi.org/10.1007/s00161-019-00844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00844-5

Keywords

Navigation