Skip to main content
Log in

Facile preparation of ZnO quantum dots@porous carbon composites through direct carbonization of metal–organic complex for high-performance lithium ion batteries

  • Rapid Communications
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Nanostructured ZnO materials have been studied extensively because of their functional properties. This paper presents a composite material of zinc oxide quantum dots (ZnO QDs) and porous carbon using a one-step carbonization process. The direct carbonization of a metal–organic complex generates mesostructured porous carbon with a homogeneous distribution of ZnO QDs. The structural and morphological properties are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The resulting ZnO QDs@porous carbon composite delivers a high specific capacity of 990 mAh g−1 at 100 mA g−1, 357 mAh g−1 at 2 A g−1, and high reversibility when evaluated as an anode for lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946

    Article  CAS  Google Scholar 

  2. Akbar S, Rehan M, Haiyang L, Rafique I, Akbar H (2018) A brief review on graphene applications in rechargeable lithium ion battery electrode materials. Carbon Lett 28:1–8

    Google Scholar 

  3. Choi S, Wang G (2018) Advanced lithium-ion batteries for practical applications: technology, development, and future perspectives. Adv Mater Technol 3(9):1700376. https://doi.org/10.1002/admt.201700376

    Article  CAS  Google Scholar 

  4. Zhang J, Gu P, Xu J, Xue H, Pang H (2016) High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium–sulfur batteries. Nanoscale 8(44):18578–18595

    Article  CAS  Google Scholar 

  5. Yazami R, Reynier YF (2002) Mechanism of self-discharge in graphite–lithium anode. Electrochim Acta 47(8):1217–1223

    Article  CAS  Google Scholar 

  6. Cao Y-Q, Wang S-S, Liu C, Wu D, Li A-D (2019) Atomic layer deposition of ZnO/TiO2 nanolaminates as ultra-long life anode material for lithium-ion batteries. Sci Rep 9(1):1–9

    Google Scholar 

  7. Sun F, Gao J, Wu H, Liu X, Wang L, Pi X, Lu Y (2017) Confined growth of small ZnO nanoparticles in a nitrogen-rich carbon framework: advanced anodes for long-life Li-ion batteries. Carbon 113:46–54

    Article  CAS  Google Scholar 

  8. Shen X, Mu D, Chen S, Wu B, Wu F (2013) Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. ACS Appl Mater Interfaces 5(8):3118–3125

    Article  CAS  Google Scholar 

  9. Yue H, Shi Z, Wang Q, Cao Z, Dong H, Qiao Y, Yin Y, Yang S (2014) MOF-derived cobalt-doped ZnO@ C composites as a high-performance anode material for lithium-ion batteries. ACS Appl Mater Interfaces 6(19):17067–17074

    Article  CAS  Google Scholar 

  10. Tu Z, Yang G, Song H, Wang C (2017) Amorphous ZnO quantum dot/mesoporous carbon bubble composites for a high-performance lithium-ion battery anode. ACS Appl Mater Interfaces 9(1):439–446

    Article  CAS  Google Scholar 

  11. Zhang Y, Lu Y, Feng S, Liu D, Ma Z, Wang S (2017) On-site evolution of ultrafine ZnO nanoparticles from hollow metal–organic frameworks for advanced lithium ion battery anodes. J Mater Chem A 5(43):22512–22518

    Article  CAS  Google Scholar 

  12. Park KT, Xia F, Kim SW, Kim SB, Song T, Paik U, Park WI (2013) Facile synthesis of ultrathin ZnO nanotubes with well-organized hexagonal nanowalls and sealed layouts: applications for lithium ion battery anodes. J Phys Chem C 117(2):1037–1043

    Article  CAS  Google Scholar 

  13. Li F, Yang L, Xu G, Xiaoqiang H, Yang X, Wei X, Ren Z, Shen G, Han G (2013) Hydrothermal self-assembly of hierarchical flower-like ZnO nanospheres with nanosheets and their application in Li-ion batteries. J Alloys Compd 577:663–668

    Article  CAS  Google Scholar 

  14. Yang SJ, Nam S, Kim T, Im JH, Jung H, Kang JH, Wi S, Park B, Park CR (2013) Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J Am Chem Soc 135(20):7394–7397

    Article  CAS  Google Scholar 

  15. Han TY-J, Worsley MA, Baumann TF, Satcher JH Jr (2011) Synthesis of ZnO coated activated carbon aerogel by simple sol–gel route. J Mater Chem 21(2):330–333

    Article  CAS  Google Scholar 

  16. Kumar SS, Venkateswarlu P, Rao VR, Rao GN (2013) Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int Nano Lett 3(1):30

    Article  Google Scholar 

  17. Mahamuni S, Borgohain K, Bendre B, Leppert VJ, Risbud SH (1999) Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J Appl Phys 85(5):2861–2865

    Article  CAS  Google Scholar 

  18. Son DI, Kwon BW, Park DH, Seo W-S, Yi Y, Angadi B, Lee C-L, Choi WK (2012) Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat Nanotechnol 7(7):465

    Article  CAS  Google Scholar 

  19. Zhang G, Hou S, Zhang H, Zeng W, Yan F, Li CC, Duan H (2015) High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ ZnO quantum Dots/C core–shell nanorod arrays on a carbon cloth anode. Adv Mater 27(14):2400–2405

    Article  CAS  Google Scholar 

  20. Cheng H-M, Lin K-F, Hsu H-C, Hsieh W-F (2006) Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots. Appl Phys Lett 88(26):261909

    Article  Google Scholar 

  21. Yang SJ, Kim T, Im JH, Kim YS, Lee K, Jung H, Park CR (2012) MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. Chem Mater 24(3):464–470

    Article  CAS  Google Scholar 

  22. Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M (2012) Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 1(1):107–131

    Article  CAS  Google Scholar 

  23. Lee I, Choi S, Lee HJ, Oh M (2015) Hollow metal-organic framework microparticles assembled via a self-templated formation mechanism. Cryst Growth Des 15(11):5169–5173

    Article  CAS  Google Scholar 

  24. Audebrand N, Auffrédic J-P, Louër D (1998) X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors. General concepts on precursor-dependent microstructural properties. Chem Mater 10(9):2450–2461

    Article  CAS  Google Scholar 

  25. Wahab R, Ansari S, Kim YS, Song M, Shin H-S (2009) The role of pH variation on the growth of zinc oxide nanostructures. Appl Surf Sci 255(9):4891–4896

    Article  CAS  Google Scholar 

  26. Fernando JF, Zhang C, Firestein KL, Nerkar JY, Golberg DV (2019) ZnO quantum dots anchored in multilayered and flexible amorphous carbon sheets for high performance and stable lithium ion batteries. J Mater Chem A 7(14):8460–8471

    Article  CAS  Google Scholar 

  27. Lonkar SP, Pillai VV, Alhassan SM (2018) Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation. Sci Rep 1:1–14

    Google Scholar 

  28. Zhang H, Wang Y, Zhao W, Zou M, Chen Y, Yang L, Xu L, Wu H, Cao A (2017) MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes. ACS Appl Mater Interfaces 9(43):37813–37822

    Article  CAS  Google Scholar 

  29. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496

    Article  CAS  Google Scholar 

  30. Lu S, Wang H, Zhou J, Wu X, Qin W (2017) Atomic layer deposition of ZnO on carbon black as nanostructured anode materials for high-performance lithium-ion batteries. Nanoscale 9(3):1184–1192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Jae Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, Y.J., Shin, M.C., Kim, J.H. et al. Facile preparation of ZnO quantum dots@porous carbon composites through direct carbonization of metal–organic complex for high-performance lithium ion batteries. Carbon Lett. 31, 323–329 (2021). https://doi.org/10.1007/s42823-020-00175-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00175-5

Keywords

Navigation