Skip to main content

Advertisement

Log in

Factors influencing susceptibility testing of antifungal drugs: a critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI)

  • Clinical Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Due to the increasing numbers of fungal infections and the emergence of drug-resistant fungi, optimization and standardization of diagnostic methods for the measurement of antifungal susceptibility are ongoing. The M27-A4 document by the US Clinical and Laboratory Standards Institute (CLSI) is presently used for the interpretation of minimum inhibitory concentrations of major opportunistic yeast species as measured by broth microdilution testing in many countries. Although microdilution is considered a benchmark for reproducible and accurate results, increased testing capacity, and limited human bias, the method is often inaccessible to routine clinical laboratories and researchers, especially in low-income countries. Furthermore, several studies suggest that there are still a considerable number of factors that make the estimation of in vitro activity of antifungal agents challenging. This review article summarizes the limitations of the M27-A4 standard which, despite the advances and improvements obtained by the standardization of antimicrobial resistance testing methods by CLSI, still persist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Albataineh MT, Sutton DA, Fothergill AW, Wiederhold NP (2016) Update from the laboratory: clinical identification and susceptibility testing of fungi and trends in antifungal resistance. Infect Dis Clin N Am 30:13–35. https://doi.org/10.1016/j.idc.2015.10.014

    Article  Google Scholar 

  2. Spitzer M, Robbins N, Wright GD (2017) Combinatorial strategies for combating invasive fungal infections. Virulence 8:169–185. https://doi.org/10.1080/21505594.2016.1196300

    Article  CAS  PubMed  Google Scholar 

  3. Day JN, Chau TTH, Wolbers M, Mai PP, Dung NT, Mai NH, Phu NH, Nghia HD, Phong ND, Thai CQ, Thai LH, Chuong LV, Sinh DX, Duong VA, Hoang TN, Diep PT, Campbell JI, Sieu TPM, Baker SG, Chau NVV, Hien TT, Lalloo DG, Farrar JJ (2013) Combination antifungal therapy for cryptococcal meningitis. N Engl J Med 368:1291–1302. https://doi.org/10.1056/NEJMoa1110404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nami S, Aghebati-Maleki A, Morovati H, Aghebati-Maleki L (2019) Current antifungal drugs and immunotherapeutic approaches as promising strategies to treatment of fungal diseases. Biomed Pharmacother 110:857–868. https://doi.org/10.1016/j.biopha.2018.12.009

    Article  CAS  PubMed  Google Scholar 

  5. Sanguinetti M, Posteraro B, Beigelman-Aubry C, Lamoth F, Dunet V, Slavin M, Richardson MD (2019) Diagnosis and treatment of invasive fungal infections: looking ahead. J Antimicrob Chemother 74:II27–II37. https://doi.org/10.1093/jac/dkz041

    Article  CAS  PubMed  Google Scholar 

  6. Wiederhold NP Antifungal resistance: current trends and future strategies to combat. Infect Drug Resist 10:249–259. https://doi.org/10.2147/IDR.S124918

  7. Alastruey-Izquierdo A, Melhem MSC, Bonfietti LX, Rodriguez-Tudela JL (2015) Susceptibility test for fungi: clinical and laboratorial correlations in medical mycology. Rev Inst Med Trop 57:57–64

    CAS  Google Scholar 

  8. Sun KS, Tsai CF, Chen SCC, Huang WC (2017) Clinical outcome and prognostic factors associated with invasive pulmonary aspergillosis: an 11-year follow-up report from Taiwan. PLoS One 12:1–10. https://doi.org/10.1371/journal.pone.0186422

    Article  CAS  Google Scholar 

  9. Colombo AL, Tobón A, Restrepo A, Queiroz-Telles F, Nucci M (2011) Epidemiology of endemic systemic fungal infections in Latin America. Med Mycol 49:785–798. https://doi.org/10.3109/13693786.2011.577821

    Article  PubMed  Google Scholar 

  10. Perfect JR (2017) The antifungal pipeline: a reality check. Nat Rev Drug Discov 16:603–616

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Martinez R (2006) Atualização no use of antifungal agents. J Bras Pneumol 32:449–460

    PubMed  Google Scholar 

  12. Murray PR, Rosenthal KS, Pfaller MA (2014) Medical microbiology. Elsevier, Rio de Janeiro

    Google Scholar 

  13. Clinical and Laboratory Standards Institute (2017) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard-fourth edition. CLSI document M27- A4.Wayne, PA

  14. Vitale RG, Pascuccelli V, Afeltra J (2012) Influence of capsule size on the in vitro activity of antifungal agents against clinical Cryptococcus neoformans var. grubii strains. J Med Microbiol 61:384–388. https://doi.org/10.1099/jmm.0.036152-0

    Article  CAS  PubMed  Google Scholar 

  15. Córdoba S, Afeltra J, Vitale RG (2011) Evaluation of the in vitro activity of amphotericin B by time-kill curve methodology against large and small capsulate C. neoformans isolates. Diagn Microbiol Infect Dis 71:260–262. https://doi.org/10.1016/j.diagmicrobio.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  16. Garcia-Effron G, Park S, Perlin DS (2011) Improved detection of Candida sp. fks hot spot mutants by using the method of the CLSI M27-A3 document with the addition of bovine serum albumin. Antimicrob Agents Chemother 55:2245–2255

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Rodríguez-Tudela JL, Martín-Díez F, Cuenca-Estrella M, Rodero L, Carpintero Y, Gorgojo B (2000) Influence of shaking on antifungal susceptibility testing of Cryptococcus neoformans: a comparison of the NCCLS standard M27A medium, buffered yeast nitrogen base, and RPMI-2% glucose. Antimicrob Agents Chemother 44:400–404

    PubMed  PubMed Central  Google Scholar 

  18. Smith KD, Achan B, Hullsiek KH, McDonald T, Okagaki LH, Alhadab AA, Akampurira A, Rhein JR, Meya DB, Boulware DR, Nielsen K, ASTRO-CM/COAT Team (2015) Increased antifungal drug resistance in Ugandan clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 59:7197–7204

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Clinical and Laboratory Standards Institute (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard-third edition. CLSI document M27- A3.Wayne, PA

  20. Hazen KC (2013) Influence of DMSO on antifungal activity during susceptibility testing in vitro. Diagn Microbiol Infect Dis 75:60–63. https://doi.org/10.1016/j.diagmicrobio.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  21. Sidrim JJC, Rocha MFG (2004) Medical mycology in light two contemporary authors. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  22. European Committee on Antimicrobial Susceptibility Testing (2020) Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts. E. Def 7.3.2 (EUCAST-AFST)

  23. Kassim A, Omuse G, Premji Z, Revathi G (2016) Comparison of clinical laboratory standards institute and European committee on antimicrobial susceptibility testing guidelines for the interpretation of antibiotic susceptibility at a university teaching hospital in Nairobi, Kenya: A cross-sectional stud. Ann Clin Microbiol Antimicrob 15:1–7

    Google Scholar 

  24. Kahlmeter G (2015) The 2014 Garrod lecture: EUCAST - are we heading towards international agreement. J Antimicrob Chemother 70:2427–2439. https://doi.org/10.1093/jac/dkv145

    Article  CAS  PubMed  Google Scholar 

  25. Paredes CVT (2009) Actualización en pruebas de susceptibilidad antifúngica. Rev Chil Infectol 26:144–150

    Google Scholar 

  26. Pfaller MA, Burmeister L, Bartlett MS, Rinaldi MG (1988) Multicenter evaluation of four methods of yeast inoculum preparation. J Clin Microbiol 26:1437–1441

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pfaller MA, Rinaldi MG, Galgiani JN, Bartlett MS, Body BA, Espinel-Ingroff A, Fromtling RA, Hall GS, Hughes CE, Odds FC (1990) Collaborative investigation of variables in susceptibility testing of yeasts. Antimicrob Agents Chemother 34:1648–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fromtling RA, Galgiani JN, Pfaller MA, Espinel-Ingroff A, Bartizal KF, Bartlett MS, Body BA, Frey C, Hall G, Roberts GD (1993) Multicenter evaluation of a broth macrodilution antifungal susceptibility test for yeasts. Antimicrob Agents Chemother 37:39–45

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Espinel-Ingroff A, Kish CW, Kerkering TM et al (1992) Collaborative comparison of broth macrodilution and microdilution antifungal susceptibility tests. J Clin Microbiol 30:3138–3145

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Barchiesi F, Colombo AL, Mcgough DA, Rinaldi MG (1994) Comparative study of broth macrodilution and microdilution techniques for in vitro antifungal susceptibility testing of yeasts by using the National Committee for Clinical Laboratory Standards proposed standard. J Clin Microbiol 32:2494–2500

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pfaller MA, Bale M, Buschelman B, Lancaster M, Espinel-Ingroff A, Rex JH, Rinaldi MG, Cooper CR, McGinnis MR (1995) Quality control guidelines for National Committee for Clinical Laboratory Standards recommended broth macrodilution testing of amphotericin B , fluconazole and flucytosine. J Clin Microbiol 33:1104–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Barry AL, Pfaller MA, Brown SD, Espinel-Ingroff A, Ghannoum MA, Knapp C, Rennie RP, Rex JH, Rinaldi MG (2000) Quality control limits for broth microdilution susceptibility tests of ten antifungal agents. J Clin Microbiol 38:3457–3459

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Performance standards for antifungal susceptibility testing of yeasts (2017) CLSI supplement M60. 1 st ed. 1–12. https://clsi.org/media/1895/m60ed1_sample.pdf

  34. Johnson EM (2008) Issues in antifungal susceptibility testing. J Antimicrob Chemother 61:13–18. https://doi.org/10.1093/jac/dkm427

    Article  CAS  Google Scholar 

  35. Lozano-Chiu M, Nelson PW, Lancaster M, Pfaller MA, Rex JH (1997) Lot-to-lot variability of antibiotic medium 3 used for testing susceptibility of Candida isolates to amphotericin B. J Clin Microbiol 35:270–272

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghannoum MA, Ibrahim AS, Fu Y, Shafiq MC, Edwards JE Jr, Criddle RS (1992) Susceptibility testing of Cryptococcus neoformans : a microdilution technique. J Clin Microbiol 30:2881–2886

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pfaller MA, Grant C, Morthland V, Rhine-Chalberg J (1994) Comparative evaluation of alternative methods for broth dilution susceptibility testing of fluconazole against Candida albicans. J Clin Microbiol 32:506–509

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rodriguez-tudela JL, Martinez-suarez JV (1994) Improved medium for fluconazole susceptibility testing of Candida albicans. Antimicrob Agents Chemother 38:45–48

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu W, Zhang X, Liu Z, Luo X (2011) Impact of pH on the antifungal susceptibility of vaginal Candida albicans. Int J Gynecol Obstet 114:278–280

    CAS  Google Scholar 

  40. Zaragoza O, Mesa-Arango AC, Gómez-López A, Bernal-Martínez L, Rodríguez-Tudela JL, Cuenca-Estrella M (2011) Process analysis of variables for standardization of antifungal susceptibility testing of nonfermentative yeasts. Antimicrob Agents Chemother 55:1563–1570

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rang HP, Dale MM, Ritter JM (2008) Pharmacology. Elsevier, Rio de Janeiro

    Google Scholar 

  42. Murray PR, Rosenthal KS, Pfaller MA (2017) Medical microbiology. Elsevier, Rio de Janeiro

    Google Scholar 

  43. Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105

    PubMed  PubMed Central  Google Scholar 

  44. Young TW (1999) Brewing microbiology. A Chapman & Hall Food Science Book, London

    Google Scholar 

  45. Jastrzębowska K, Gabriel I (2015) Inhibitors of amino acids biosynthesis as antifungal agents. Amino Acids 47:227–249

    PubMed  Google Scholar 

  46. Lee KL, Buckley HR, Campbell CC (1975) An amino acid liquid synthetic medium for the development of mycelial and yeas forms of Candida albicans. Sabouraudia 13:148–153

    CAS  PubMed  Google Scholar 

  47. McCoy TA, Maxwell M, KruseJr PF (1959) Amino acid requirements of the Novikoff hepatoma in vitro. Exp Biol Med 100:115–118

    CAS  Google Scholar 

  48. Moore GE, Mount D, Tara G, Schwartz N (1963) Growth of human tumor cells in suspension cultures. AACR J Arch 23:1735–1741

    CAS  Google Scholar 

  49. Radetsky M, Wheeler RC, Roe MH, Todd JK (1986) Microtiter broth dilution method for yeast susceptibility testing with validation by clinical outcome. J Clin Microbiol 24:600–606

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rex JH, Cooper CR, Merz WG et al (1995) Detection of amphotericin B-resistant Candida isolates in a broth-based system. Antimicrob Agents Chemother 39:906–909

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Cuenca-Estrella M, Díaz-Guerra TM, Mellado E, Rodríguez-Tudela JL (2001) Detection of resistance to amphotericin B in Candida isolates by using Iso-Sensitest broth. Antimicrob Agents Chemother 45:2070–2074

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cruz RC, Werneck SMC, Oliveira CS et al (2013) Influence of different media, incubation times, and temperatures for determining the MICs of seven antifungal agents against Paracoccidioides brasiliensis by microdilution. J Clin Microbiol 51:436–443

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Goughenour KD, Balada-Llasat JM, Rappleye CA (2015) Quantitative microplate-based growth assay for determination of antifungal susceptibility of Histoplasma capsulatum yeasts. J Clin Microbiol 53:3286–3295

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Peano A, Pasquetti M, Tizzani P, Chiavassa E, Guillot J, Johnson E (2017) Methodological issues in antifungal susceptibility testing of Malassezia pachydermatis. J.Fungi 3:2–15. https://doi.org/10.3390/jof3030037

    Article  CAS  Google Scholar 

  55. Ferreira CMH, PintoISS SEV, SoaresHMVM (2015) (un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions-a review. RSC Adv 5:30989–31003

    CAS  Google Scholar 

  56. Will MA, Clark NA, Swain JE (2011) Biological pH buffers in IVF: help or hindrance to success. J Assist Reprod Genet 28:711–724

    PubMed  PubMed Central  Google Scholar 

  57. Gadea I, Cuenca M, Gegúndez MI et al (1997) Effect of pH and buffer system on the in-vitro activity of five antifungals against yeasts. J Antimicrob Chemother 39:453–459. https://doi.org/10.1093/jac/39.4.453

    Article  CAS  PubMed  Google Scholar 

  58. McIntyre KA, Galgiani JN (1989) pH and other effects of the antifungal activity of cilofungin (LY121019). Antimicrob Agents Chemother 33:731–735

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Arthington-Skaggs BA, Warnock DW, Morrison CJ (2000) Quantitation of Candida albicans ergosterol content improves the correlation between in vitro antifungal susceptibility test results and in vivo outcome after fluconazole treatment in a murine model of invasive candidiasis. Antimicrob Agents Chemother 44:2081–2085

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ostrosky-Zeichner L, Rex JH, Pfaller MA, Diekema DJ, Alexander BD, Andes D, Brown SD, Chaturvedi V, Ghannoum MA, Knapp CC, Sheehan DJ, Walsh TJ (2008) Rationale for reading fluconazole MICs at 24 hours rather than 48 hours when testing Candida spp. by the CLSI M27-A2 standard method. Antimicrob Agents Chemother 52:4175–4177. https://doi.org/10.1128/AAC.00420-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kaya E, Özbilge H (2012) Determination of the eff ect of fluconazole against Candida albicans and Candida glabrata by using microbroth kinetic assay. Turk J Med Sci 42:325–328

    CAS  Google Scholar 

  62. Berkow EL, Lockhart SR, Ostrosky-Zeichner L (2020) Antifungal susceptibility testing: current approaches. Clin Microbiol Rev 33:1–30

    Google Scholar 

  63. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 1:671–679. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  64. Kuhn DM, Balkis M, Chandra J, Mukherjee PK, Ghannoum MA (2003) Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol 41:506–508

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Stoppa MA, Casemiro LA, Vinholis AHC, Cunha WR, Silva MLA, Martins CHG, Furtado NAJC (2009) Comparative study between the CLSI hair and EUCAST hair methodologies recommended for antifungal activity evaluation. Quim Nova 32:498–502

    CAS  Google Scholar 

  66. Arikan S (2007) Current status of antifungal susceptibility testing methods. Med Mycol 45:569–587. https://doi.org/10.1080/13693780701436794

    Article  CAS  PubMed  Google Scholar 

  67. Liu M, Seidel V, Katerere DR, Gray AI (2007) Colorimetric broth microdilution method for the antifungal screening of plant extracts against yeasts. Methods 42:325–329. https://doi.org/10.1016/j.ymeth.2007.02.013

    Article  CAS  PubMed  Google Scholar 

  68. Monteiro MC, Cruz ML, Cantizani J et al (2012) A new approach to drug discovery: high-throughput screening of microbial natural extracts against Aspergillus fumigatus using resazurin. J Biomol Screen 17:542–549. https://doi.org/10.1177/1087057111433459

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Vicente Braga de Souza.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Responsible Editor: Carlos Pelleschi Taborda.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, E.S.O., Cortez, A.C.A., de Souza Carvalho Melhem, M. et al. Factors influencing susceptibility testing of antifungal drugs: a critical review of document M27-A4 from the Clinical and Laboratory Standards Institute (CLSI). Braz J Microbiol 51, 1791–1800 (2020). https://doi.org/10.1007/s42770-020-00354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00354-6

Keywords

Navigation