Skip to main content
Log in

Multi-objective Optimization of Double-Jet MQL System Parameters Meant for Enhancing the Turning Performance of Ti–6Al–4V Alloy

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper mainly focuses on determination of optimum minimum quantity lubrication (MQL) parameter settings due to enhance the machinability of Ti–6Al–4V alloy, which is an area of huge concern for industrial production and academic research around the globe. MQL is an eco-friendly cooling method, which can be employed during machining Ti–6Al–4V alloys. In this work, a highly efficient MQL system has been developed by appropriate selection of various parameters like nozzle diameter, angle of impingement, oil flow rate, air pressure, etc., for enhancing the turning machinability of Ti–6Al–4V alloys. Cutting temperature, cutting force, and surface roughness have been considered as machinability criteria, where minimization of these responses was desirable. An experimental investigation has been designed by Box–Behnken design of experiments and carried out for turning Ti–6Al–4V alloy by carbide insert under double-jet MQL. Empirical models were developed for the process responses by response surface methodology. By employing ANOVA statistics, all the predictive models were found significant and highly acceptable with more than 90% of R2. MAPE for the temperature, force, and roughness were found to be 3.93%, 1.27%, and 5.78%, respectively, when model responses were compared with experimental responses. As a final point, the desirability function approach has been used to find out the suitable combination of coolant application parameters which were nozzle diameter of 0.5 mm, primary nozzle angle of 20°, primary nozzle angle of 15°, air pressure of 20 bar, and oil flow rate of 50 ml/h with composite desirability value of 0.8301.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ezugwu, E.O.; Wang, Z.M.: Titanium alloys and their machinability—a review. J. Mater. Process. Technol. 68, 262–274 (1997). https://doi.org/10.1016/S0924-0136(96)00030-1

    Article  Google Scholar 

  2. Veiga, C.; Davim, J.P.; Loureiro, A.J.R.: Review on machinability of titanium alloys: the process perspective. Rev. Adv. Mater. Sci. 34, 148–164 (2013)

    Google Scholar 

  3. Kosaraju, S.; Anne, V.G.: Optimal machining conditions for turning Ti–6Al–4V using response surface methodology. Adv. Manuf. (2013). https://doi.org/10.1007/s40436-013-0047-9

    Article  Google Scholar 

  4. Settineri, L.; Faga, M.G.: Nanostructured cutting tools coatings for machining titanium. Mach. Sci. Technol. (2008). https://doi.org/10.1080/10910340802067239

    Article  Google Scholar 

  5. Ginting, Y.R.; Boswell, B.; Biswas, W.; Islam, N.: Advancing environmentally conscious machining. Procedia CIRP 26, 391–396 (2015). https://doi.org/10.1016/j.procir.2014.07.087

    Article  Google Scholar 

  6. Kỳvak, T.; Şeker, U.: Effect of cryogenic treatment applied to M42 HSS drills on the machinability of Ti–6Al–4V alloy. Mater. Tehnol. (2015). https://doi.org/10.17222/mit.2014.283

    Article  Google Scholar 

  7. Zhang, N.; Yang, F.; Liu, G.: Cutting performance of micro-textured WC/Co tools in the dry cutting of Ti–6Al–4V alloy. Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-05161-9

    Article  Google Scholar 

  8. Goindi, G.S.; Sarkar, P.: Dry machining: a step towards sustainable machining—challenges and future directions. J. Clean. Prod. (2017). https://doi.org/10.1016/j.jclepro.2017.07.235

    Article  Google Scholar 

  9. Revuru, R.S.; Zhang, J.Z.; Posinasetti, N.R.; Kidd, T.: Optimization of titanium alloys turning operation in varied cutting fluid conditions with multiple machining performance characteristics. Int. J. Adv. Manuf. Technol. (2018). https://doi.org/10.1007/s00170-017-1299-5

    Article  Google Scholar 

  10. Sreejith, P.S.; Ngoi, B.K.A.: Dry machining: machining of the future. J. Mater. Process. Technol. 101, 287–291 (2000). https://doi.org/10.1016/S0924-0136(00)00445-3

    Article  Google Scholar 

  11. Dhar, N.R.; Khan, M.M.A.: Effects of minimum quantity lubrication (MQL) by vegetable oil-based cutting fluid on machinability of AISI 9310 steel. Int. J. Mach. Mach. Mater. 7, 17–38 (2010). https://doi.org/10.1504/ijmmm.2010.029844

    Article  Google Scholar 

  12. Sinha, M.K.; Madarkar, R.; Ghosh, S.; Rao, P.V.: Effects of minimum quantity lubrication (MQL) on forces and surface roughness in Inconel 718 grinding surface roughness in Inconel 718 grinding, pp. 1–6 (2015)

  13. Pervaiz, S.; Deiab, I.; Rashid, A.; Nicolescu, M.: Minimal quantity cooling lubrication in turning of Ti6Al4V: influence on surface roughness, cutting force and tool wear. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2017). https://doi.org/10.1177/0954405415599946

    Article  Google Scholar 

  14. Krishnaraj, V.; Krishna, B.H.; Sheikh-Ahmad, J.Y.: An experimental study on end milling of titanium alloy (Ti–6Al–4V) under dry and minimum quantity lubrication conditions. Int. J. Mach. Mach. Mater. (2017). https://doi.org/10.1504/IJMMM.2017.086163

    Article  Google Scholar 

  15. Yıldırım, Ç.V.; Kıvak, T.; Erzincanlı, F.: Tool wear and surface roughness analysis in milling with ceramic tools of Waspaloy: a comparison of machining performance with different cooling methods. J. Braz. Soc. Mech. Sci. Eng. (2019). https://doi.org/10.1007/s40430-019-1582-5

    Article  Google Scholar 

  16. Su, Y.; He, N.; Li, L.; Iqbal, A.; Xiao, M.H.; Xu, S.; et al.: Refrigerated cooling air cutting of difficult-to-cut materials. Int. J. Mach. Tools Manuf. (2007). https://doi.org/10.1016/j.ijmachtools.2006.07.005

    Article  Google Scholar 

  17. Yildirim, Ç.V.; Kivak, T.; Sarikaya, M.; Şirin, Ş.: Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL. J. Mater. Res. Technol. 9(2), 2079–2092. (2020). https://doi.org/10.1016/j.jmrt.2019.12.069

    Article  Google Scholar 

  18. Dhar, N.R.; Siddiqui, A.T.; Rashid, M.H.: Effect of high-pressure coolant jet on grinding temperature, chip and surface roughness in grinding AISI-1040 steel. J. Eng. Appl. Sci. 1, 22–28 (2006)

    Google Scholar 

  19. Şirin, Ş.; Kıvak, T.: Performances of different eco-friendly nanofluid lubricants in the milling of Inconel X-750 superalloy. Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.04.042

    Article  Google Scholar 

  20. Yan, L.; Yuan, S.; Liu, Q.: Influence of minimum quantity lubrication parameters on tool wear and surface roughness in milling of forged steel. Chin. J. Mech. Eng. (Engl. Ed.) (2012). https://doi.org/10.3901/cjme.2012.03.419

    Article  Google Scholar 

  21. Upadhyay, V.; Jain, P.K.; Mehta, N.K.: Minimum quantity lubrication assisted turning—an overview. DAAAM Int. Sci. B (2012). https://doi.org/10.2507/daaam.scibook.2012.39

    Article  Google Scholar 

  22. Obikawa, T.; Kamata, Y.; Shinozuka, J.: High-speed grooving with applying MQL. Int. J. Mach. Tools Manuf. 46, 1854–1861 (2006). https://doi.org/10.1016/j.ijmachtools.2005.11.007

    Article  Google Scholar 

  23. Hadad, M.; Sadeghi, B.: Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. J. Clean. Prod. 54, 332–343 (2013). https://doi.org/10.1016/j.jclepro.2013.05.011

    Article  Google Scholar 

  24. Masoudi, S.; Vafadar, A.; Hadad, M.; Jafarian, F.: Experimental investigation into the effects of nozzle position, workpiece hardness, and tool type in MQL turning of AISI 1045 steel. Mater. Manuf. Process. 33, 1011–1019 (2018). https://doi.org/10.1080/10426914.2017.1401716

    Article  Google Scholar 

  25. Attanasio, A.; Gelfi, M.; Giardini, C.; Remino, C.: Minimal quantity lubrication in turning: effect on tool wear. Wear 260, 333–338 (2006). https://doi.org/10.1016/j.wear.2005.04.024

    Article  Google Scholar 

  26. Sharma, V.S.; Dogra, M.; Suri, N.M.: Cooling techniques for improved productivity in turning. Int. J. Mach. Tools Manuf. 49, 435–453 (2009). https://doi.org/10.1016/j.ijmachtools.2008.12.010

    Article  Google Scholar 

  27. Diniz, A.E.; Micaroni, R.: Influence of the direction and flow rate of the cutting fluid on tool life in turning process of AISI 1045 steel. Int. J. Mach. Tools Manuf. 47, 247–254 (2007). https://doi.org/10.1016/j.ijmachtools.2006.04.003

    Article  Google Scholar 

  28. Huang, S.; Lv, T.; Wang, M.; Xu, X.: Effects of machining and oil mist parameters on electrostatic minimum quantity lubrication—EMQL turning process. Int. J. Precis Eng. Manuf. Green Technol. (2018). https://doi.org/10.1007/s40684-018-0034-5

    Article  Google Scholar 

  29. Liu, Z.Q.; Cai, X.J.; Chen, M.; An, Q.L.: Investigation of cutting force and temperature of end-milling Ti–6Al–4V with different minimum quantity lubrication (MQL) parameters. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2011). https://doi.org/10.1177/2041297510393793

    Article  Google Scholar 

  30. Damir, A.; Sadek, A.; Attia, H.; Tendolkar, A.: Characterization and optimization of machinability and environmental impact of machining of Ti–6Al–4V with minimum quantity lubrication. Int. J. Robot. Mechatron. (2017). https://doi.org/10.21535/ijrm.v4i1.971

    Article  Google Scholar 

  31. Shanmughasundaram, P.; Subramanian, R.: Influence of graphite and machining parameters on the surface roughness of Al-fly ash/graphite hybrid composite: a Taguchi approach. J. Mech. Sci. Technol. 27, 2445–2455 (2013). https://doi.org/10.1007/s12206-013-0630-9

    Article  Google Scholar 

  32. Do, T.-V.; Hsu, Q.-C.: Optimization of minimum quantity lubricant conditions and cutting parameters in hard milling of AISI H13 steel. Appl. Sci. 6, 83 (2016). https://doi.org/10.3390/app6030083

    Article  Google Scholar 

  33. Mia, M.; Al Bashir, M.; Khan, M.A.; Dhar, N.R.: Optimization of MQL flow rate for minimum cutting force and surface roughness in end milling of hardened steel (HRC 40). Int. J. Adv. Manuf. Technol. 89, 675–690 (2017). https://doi.org/10.1007/s00170-016-9080-8

    Article  Google Scholar 

  34. Liu, G.; Li, C.; Zhang, Y.; Yang, M.; Jia, D.; Zhang, X.; et al.: Process parameter optimization and experimental evaluation for nanofluid MQL in grinding Ti–6Al–4V based on grey relational analysis. Mater. Manuf. Process. (2018). https://doi.org/10.1080/10426914.2017.1388522

    Article  Google Scholar 

  35. Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, vol. 38. Wiley, New York (1996). https://doi.org/10.2307/1270613

    Book  MATH  Google Scholar 

  36. Nam, J.; Kim, J.W.; Kim, J.S.; Lee, J.; Lee, S.W.: Parametric analysis and optimization of nanofluid minimum quantity lubrication micro-drilling process for titanium alloy (Ti–6Al–4V) using response surface methodology and desirability function. Procedia Manuf. 26, 403–414 (2018). https://doi.org/10.1016/j.promfg.2018.07.048

    Article  Google Scholar 

  37. Lorza, R.; Calvo, M.; Labari, C.; Fuente, P.: Using the multi-response method with desirability functions to optimize the zinc electroplating of steel screws. Metals (Basel) (2018). https://doi.org/10.3390/met8090711

    Article  Google Scholar 

  38. Gok, A.: A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA. Meas. J. Int. Meas. Confed. (2015). https://doi.org/10.1016/j.measurement.2015.03.037

    Article  Google Scholar 

  39. Chatterjee, S.; Mondal, A.K.; Mahapatra, S.: Combined approach for studying the parametric effects on quality of holes using RSM and PCA in drilling of Aisi-304 stainless steel. In: 5th International & 26 th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014), pp. 5–10 (2014)

  40. Li, N.; Hu, Y.; Lu, Y.Z.; Zeng, R.J.; Sheng, G.P.: Multiple response optimization of the coagulation process for upgrading the quality of effluent from municipal wastewater treatment plant. Sci. Rep. (2016). https://doi.org/10.1038/srep26115

    Article  Google Scholar 

  41. Gupta, M.K.; Sood, P.K.; Sharma, V.S.: Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. J. Clean. Prod. 135, 1276–1288 (2016). https://doi.org/10.1016/j.jclepro.2016.06.184

    Article  Google Scholar 

  42. Gupta, M.K.; Sood, P.K.; Sharma, V.S.: Machining parameters optimization of titanium alloy using response surface methodology and particle swarm optimization under minimum-quantity lubrication environment. Mater. Manuf. Process. 31, 1671–1682 (2016). https://doi.org/10.1080/10426914.2015.1117632

    Article  Google Scholar 

  43. Mia, M.; Dhar, N.R.: Modeling of surface roughness using RSM, FL and SA in dry hard turning. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-017-2754-1

    Article  Google Scholar 

  44. Najiha, M.S.; Rahman, M.M.; Kadirgama, K.; Noor, M.M.; Ramasamy, D.: Multi-objective optimization of minimum quantity lubrication in end milling of aluminum alloy AA6061T6. Int. J. Automot. Mech. Eng. 12, 3003–3017 (2015). https://doi.org/10.15282/ijame.12.2015.15.0250

    Article  Google Scholar 

  45. Das, M.K.; Kumar, K.; Barman, T.K.; Sahoo, P.: Investigation on electrochemical machining of EN31 steel for optimization of MRR and surface roughness using artificial bee colony algorithm. Procedia Eng. (2014). https://doi.org/10.1016/j.proeng.2014.12.309

    Article  Google Scholar 

  46. Hashmi, K.H.; Zakria, G.; Raza, M.B.; Khalil, S.: Optimization of process parameters for high speed machining of Ti–6Al–4V using response surface methodology. Int. J. Adv. Manuf. Technol. 85, 1847–1856 (2016). https://doi.org/10.1007/s00170-015-8057-3

    Article  Google Scholar 

  47. Khatri, A.; Jahan, M.P.: Investigating tool wear mechanisms in machining of Ti–6Al–4V in flood coolant, dry and MQL conditions. Procedia Manuf. (2018). https://doi.org/10.1016/j.promfg.2018.07.051

    Article  Google Scholar 

  48. Bermingham, M.J.; Sim, W.M.; Kent, D.; Gardiner, S.; Dargusch, M.S.: Tool life and wear mechanisms in laser assisted milling Ti–6Al–4V. Wear (2015). https://doi.org/10.1016/j.wear.2014.11.001

    Article  Google Scholar 

  49. Perçin, M.; Aslantas, K.; Ucun, I.; Kaynak, Y.; Çicek, A.: Micro-drilling of Ti–6Al–4V alloy: the effects of cooling/lubricating. Precis. Eng. (2016). https://doi.org/10.1016/j.precisioneng.2016.02.015

    Article  Google Scholar 

  50. Singh, R.; Dureja, J.S.; Dogra, M.; Randhawa, J.S.: Optimization of machining parameters under MQL turning of Ti–6Al–4V alloy with textured tool using multi-attribute decision-making methods. World J. Eng. (2019). https://doi.org/10.1108/WJE-06-2019-0170

    Article  Google Scholar 

  51. VenkataRamana, M.; KrishnaMohanRao, G.; HanumanthaRao, D.: Multi objective optimization of process parameters in turning of Ti–6Al–4V alloy. Mater. Today Proc. (2018). https://doi.org/10.1016/j.matpr.2018.06.247

    Article  Google Scholar 

  52. Tendolkar, A.; Damir, A.; Attia, H.; Hendrick, P.; Diakodimitris, C.: Characterisation and optimisation of minimum quantity lubrication in milling of Ti–6Al–4V alloy using phase Doppler anemometry (PDA). Int. J. Mechatron. Manuf. Syst. (2014). https://doi.org/10.1504/IJMMS.2014.067164

    Article  Google Scholar 

  53. Zaman, P.B.; Dhar, N.R.: Design and evaluation of an embedded double jet nozzle for MQL delivery intending machinability improvement in turning operation. J. Manuf. Process. 44, 179–196 (2019). https://doi.org/10.1016/j.jmapro.2019.05.047

    Article  Google Scholar 

  54. Xiong, Y.; Wu, J.; Deng, C.; Wang, Y.: Machining process parameters optimization for heavy-duty CNC machine tools in sustainable manufacturing. Int. J. Adv. Manuf. Technol. (2016). https://doi.org/10.1007/s00170-013-4881-5

    Article  Google Scholar 

  55. Montgomery, D.: Introduction to statical quality. Control (2009). https://doi.org/10.1002/1521-3773(20010316)40:6%3c9823:AID-ANIE9823%3e3.3.CO;2-C

    Article  Google Scholar 

  56. Antony, J.: Design of Experiments for Engineers and Scientists. Elsevier, New York (2003). https://doi.org/10.1016/B978-0-7506-4709-0.X5000-5

    Book  Google Scholar 

  57. Montgomery, D.C.: Design and Analysis of Experiments, 8th edn. Wiley, New York (2013)

    Google Scholar 

  58. Carley, K.M.; Kamneva, N.Y.; Reminga, J.: Response surface methodology: CASOS technical report. Network (2004). https://doi.org/10.1002/wics.73

    Article  Google Scholar 

  59. Koc, B.; Kaymak-Ertekin, F.: Response surface methodology and food processing applications. GIDA J. Food 35(1), 63–70 (2009)

    Google Scholar 

  60. Boyaci, I.H.: A new approach for determination of enzyme kinetic constants using response surface methodology. Biochem. Eng. J. (2005). https://doi.org/10.1016/j.bej.2005.04.001

    Article  Google Scholar 

  61. Manohar, M.; Jomy Joseph, T.S.: Application of Box Behnken design to optimize the parameters for turning Inconel 718 using coated carbide tools. Int. J. Sci. Eng. Res. (2013). https://doi.org/10.4314/tjpr.v11i5.2

    Article  Google Scholar 

  62. Sarikaya, M.; Güllü, A.: Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of difficult-to-cut alloy Haynes 25. J. Clean. Prod. (2015). https://doi.org/10.1016/j.jclepro.2014.12.020

    Article  Google Scholar 

  63. Bhushan, R.K.: Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. J. Clean. Prod. (2013). https://doi.org/10.1016/j.jclepro.2012.08.008

    Article  Google Scholar 

  64. Derringer, G.; Suich, R.: Simultaneous optimization of several response variables. J. Qual. Technol. (1980). https://doi.org/10.1080/00224065.1980.11980968

    Article  Google Scholar 

  65. Derringer, G.C.: A balancing act : optimizing a product’s properties. Qual. Prog. 27, 51–58 (1994)

    Google Scholar 

  66. Ehrgott, M.: Multicriteria Optimization. Springer, Berlin (2005). https://doi.org/10.1007/3-540-27659-9

    Book  MATH  Google Scholar 

  67. Lin, Z.C.; Ho, C.Y.: Analysis and application of grey relation and ANOVA in chemical–mechanical polishing process parameters. Int. J. Adv. Manuf. Technol. 21, 10–14 (2003). https://doi.org/10.1007/s001700300001

    Article  Google Scholar 

  68. Singh, K.P.; Singh, A.K.; Gupta, S.; Sinha, S.: Optimization of Cr(VI) reduction by zero-valent bimetallic nanoparticles using the response surface modeling approach. Desalination (2011). https://doi.org/10.1016/j.desal.2010.11.056

    Article  Google Scholar 

  69. Sachin, B.; Narendranath, S.; Chakradhar, D.: Enhancement of surface integrity by cryogenic diamond burnishing toward the improved functional performance of the components. J. Braz. Soc. Mech. Sci. Eng. (2019). https://doi.org/10.1007/s40430-019-1918-1

    Article  Google Scholar 

  70. Sahu, N.K.; Andhare, A.: Design of experiments applied to industrial process. Stat. Approaches Emphas. Des. Exp. Appl. Chem. Process. (2018). https://doi.org/10.5772/intechopen.73558

    Article  Google Scholar 

  71. Majumder, H.; Paul, T.R.; Dey, V.; Dutta, P.; Saha, A.: Use of PCA-grey analysis and RSM to model cutting time and surface finish of Inconel 800 during wire electro discharge cutting. Meas. J. Int. Meas. Confed. (2017). https://doi.org/10.1016/j.measurement.2017.05.007

    Article  Google Scholar 

  72. Saha, A.; Mondal, S.C.: Multi-objective optimization in WEDM process of nanostructured hardfacing materials through hybrid techniques. Meas. J. Int. Meas. Confed. (2016). https://doi.org/10.1016/j.measurement.2016.07.087

    Article  Google Scholar 

  73. Mia, M.; Khan, M.A.; Dhar, N.R.: Study of surface roughness and cutting forces using ANN, RSM, and ANOVA in turning of Ti–6Al–4V under cryogenic jets applied at flank and rake faces of coated WC tool. Int. J. Adv. Manuf. Technol. (2017). https://doi.org/10.1007/s00170-017-0566-9

    Article  Google Scholar 

  74. Duchosal, A.; Leroy, R.; Vecellio, L.; Louste, C.; Ranganathan, N.: An experimental investigation on oil mist characterization used in MQL milling process. Int. J. Adv. Manuf. Technol. 66, 1003–1014 (2013). https://doi.org/10.1007/s00170-012-4384-9

    Article  Google Scholar 

  75. Sharma, V.S.; Dogra, M.; Suri, N.M.: Cooling techniques for improved productivity in turning. Int. J. Mach. Tools Manuf. (2009). https://doi.org/10.1016/j.ijmachtools.2008.12.010

    Article  Google Scholar 

  76. Park, K.H.; Olortegui-Yume, J.; Yoon, M.C.; Kwon, P.: A study on droplets and their distribution for minimum quantity lubrication (MQL). Int. J. Mach. Tools Manuf. (2010). https://doi.org/10.1016/j.ijmachtools.2010.05.001

    Article  Google Scholar 

  77. Rohit, J.N.; Surendra Kumar, K.; Sura Reddy, N.; Kuppan, P.; Balan, A.S.S.: Computational fluid dynamics analysis of MQL spray parameters and its influence on MQL milling of SS304 (2018). https://doi.org/10.1007/978-981-10-8518-5_2

  78. Manjaiah, M.; Deenashree, K.N.; Basavarajappa, S.: WED-machining characteristics of Ti6Al4V alloy based on central composite design. Int. J. Mater. Prod. Technol. (2019). https://doi.org/10.1504/IJMPT.2019.102634

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Directorate of Advisory Extension and Research Services (DAERS), BUET, Bangladesh for providing research funds, Sanction No. DAERS/CASR/R-01/2019/DR-2485 (48) dated 26/08/2019 and for providing the laboratory facility to carry out the research work. Authors also thankful to their other team members S. Saha and I.H. Tusar for their availability during experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prianka B. Zaman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, P.B., Dhar, N.R. Multi-objective Optimization of Double-Jet MQL System Parameters Meant for Enhancing the Turning Performance of Ti–6Al–4V Alloy. Arab J Sci Eng 45, 9505–9526 (2020). https://doi.org/10.1007/s13369-020-04806-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04806-x

Keywords

Navigation