Skip to main content
Log in

Green Synthesis of Kaolin-Supported Nanoscale Zero-Valent Iron Using Ruellia tuberosa Leaf Extract for Effective Decolorization of Azo Dye Reactive Black 5

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Kaolin-supported nanoscale zero-valent iron (K-NZVI) was synthesized via a green synthesis method, in which leaf extract of Ruellia tuberosa was used as a reducing agent. The synthesized K-NZVI was used for decolorization of Reactive Black 5 (RB5), an azo dye widely used in textile industry. The XRD patterns of the K-NZVI particles show the characteristic peaks of Fe0, indicating that Fe0 nanoparticles (NZVI) were successfully synthesized on the kaolin surface. The SEM, TEM images and EDS elemental mapping show that the NZVI particles are well dispersed on the kaolin surface, thus, reducing the extent of NZVI aggregation. Batch experiments for decolorization of RB5 were carried out to investigate the effects of process parameters including solution pH, initial dye concentration and contact time. The results show that high decolorization efficiencies are obtained in acidic pH. Increasing initial dye concentration causes the decolorization efficiency to decrease, whereas increasing contact time results in higher efficiency. Furthermore, after five cycles of reuse of K-NZVI, the decolorization efficiency slightly decreases, indicating high reusability and stability of K-NZVI. The disappearance of the characteristic peaks of RB5 solution recorded by a UV–Vis spectrophotometer indicates cleavage of the azo bonds and, thus, the decomposition of RB5 in the solution. From a kinetic analysis performed at various RB5 concentrations, the decolorization process of RB5 by K-NZVI is well fit by the pseudo-first-order kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ghaly, A.E.; Ananthashankar, R.; Alhattab, M.; Ramakrishnan, V.V.: Production, characterization and treatment of textile effluents: a critical review. J. Chem. Eng. Process Technol. 5, 1–19 (2014)

    Google Scholar 

  2. Lucas, M.S.; Amaral, C.; Sampaio, A.; Peres, J.A.; Dias, A.A.: Biodegradation of the diazo dye Reactive Black 5 by a wild isolate of Candida oleophila. Enzyme Microb. Technol. 39, 51–55 (2006)

    Article  Google Scholar 

  3. Franciscon, E.; Grossman, M.J.; Paschoal, J.A.R.; Reyes, F.G.R.; Durrant, L.R.: Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. Springerplus 1, 1–10 (2012)

    Article  Google Scholar 

  4. Zhu, H.; Jiang, R.; Fu, Y.; Guan, Y.; Yao, J.; Xiao, L.; Zeng, G.: Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination 286, 41–48 (2012)

    Article  Google Scholar 

  5. Garg, S.K.; Tripathi, M.; Singh, S.K.; Tiwari, J.K.: Biodecolorization of textile dye effluent by Pseudomonas putida SKG-1 (MTCC10510) under the conditions optimized for monoazo dye orange II color removal in simulated minimal salt medium. Int. Biodeterior. Biodegrad. 74, 24–35 (2012)

    Article  Google Scholar 

  6. Qu, Y.; Cao, X.; Ma, Q.; Shi, S.; Tan, L.; Li, X.; Zhou, H.; Zhang, X.; Zhou, J.: Aerobic decolorization and degradation of Acid Red B by a newly isolated Pichia sp TCL. J. Hazard. Mater. 223–224, 31–38 (2012)

    Article  Google Scholar 

  7. Alqaragully, M.B.: Removal of textile dyes (Maxilon Blue, and Methyl Orange) by date stones activated carbon. Int. J. Adv. Res. Chem. Sci. 1, 48–59 (2014)

    Google Scholar 

  8. dos Santos, A.B.; Cervantes, F.J.; van Lier, J.B.: Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour. Technol. 98, 2369–2385 (2007)

    Article  Google Scholar 

  9. Farooq, M.U.; Jalees, M.I.; Iqbal, A.; Zahra, N.; Kiran, A.: Characterization and adsorption study of biosorbents for the removal of basic cationic dye: kinetic and isotherm analysis. Desalination Water Treat. 160, 333–342 (2019)

    Article  Google Scholar 

  10. Hashim, K.S.; Al-Saati, N.H.; Alquzweeni, S.S.; Zubaidi, S.L.; Kot, P.; Kraidi, L.; Hussein, A.H.; Alkhaddar, R.; Shaw, A.; Alwash, R.: Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters. IOP Conf. Ser. Mater. Sci. Eng. 584, 012024 (2019)

    Article  Google Scholar 

  11. Rosales, E.; Pazos, M.; Longo, M.A.; Sanroman, M.A.: Electro-Fenton decoloration of dyes in a continuous reactor: a promising technology in colored wastewater treatment. Chem. Eng. J. 155, 62–67 (2009)

    Article  Google Scholar 

  12. Chen, C.H.; Chang, C.F.; Liu, S.M.: Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions. J. Hazard. Mater. 177, 281–289 (2010)

    Article  Google Scholar 

  13. Kamat, P.V.; Meisel, D.: Nanoscience opportunities in environmental remediation. C. R. Chim. 6, 999–1007 (2003)

    Article  Google Scholar 

  14. Gang, X.; Wang, Q.; Qian, Y.J.; Gao, P.; Su, Y.M.; Liu, Z.H.; Chen, H.; Li, X.; Chen, J.B.: Simultaneous removal of aniline, antimony and chromium by ZVI coupled with H2O2: implication for textile wastewater treatment. J. Hazard. Mater. 368, 840–848 (2019)

    Article  Google Scholar 

  15. Tian, J.; Jin, J.; Chiu, P.C.; Cha, D.K.; Guo, M.; Imhoff, P.T.: A pilotscale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from storm water. Water Res. 148, 378–387 (2019)

    Article  Google Scholar 

  16. Wang, M.; Cheng, W.; Wan, T.; Hu, B.W.; Zhu, Y.L.; Song, X.F.; Sun, Y.B.: Mechanistic investigation of U(VI) sequestration by zerovalent iron/activated carbon composites. Chem. Eng. J. 362, 99–106 (2019)

    Article  Google Scholar 

  17. Salam, M.A.; Fageeh, O.; Al-Thabaiti, S.A.; Obaid, A.Y.: Removal of nitrate ions from aqueous solution using zero-valent iron nanoparticles supported on high surface area nanographenes. J. Mol. Liq. 212, 708–715 (2015)

    Article  Google Scholar 

  18. Lee, H.; Kim, B.H.; Park, Y.K.; Kim, S.J.; Jung, S.C.: Application of recycled zero-valent iron nanoparticle to the treatment of wastewater containing nitrobenzene. J. Nanomater. 2015, 1–8 (2015)

    Google Scholar 

  19. Lapeyrouse, N.; Liu, M.; Zou, S.; Booth, G.; Yestrebsky, C.L.: Remediation of chlorinated alkanes by vitamin B12 and zero-zalent iron. J. Chem. 2019, 1–8 (2019)

    Article  Google Scholar 

  20. Shoiful, A.; Ueda, Y.; Nugroho, R.; Honda, K.: Degradation of organochlorine pesticides (OCPs) in water by iron (Fe)-based materials. J. Water Process. Eng. 11, 110–117 (2016)

    Article  Google Scholar 

  21. El-Temsah, Y.S.; Sevcu, A.; Bobcikova, K.; Cernik, M.; Joner, E.J.: DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere 144, 2221–2228 (2016)

    Article  Google Scholar 

  22. Gunawardana, B.; Singhal, N.; Swedlund, P.: Degradation of chlorinated phenols by zero valent iron and bimetals of iron: a review. Environ. Eng. Res. 16, 187–203 (2011)

    Article  Google Scholar 

  23. Minella, M.; Sappa, E.; Hanna, K.; Barsotti, F.; Maurino, V.; Minero, C.; Vione, D.: Considerable Fenton and photo-Fenton reactivity of passivated zero-valent iron. RSC Adv. 6, 86752–86761 (2016)

    Article  Google Scholar 

  24. Azzam, A.M.; El-Wakeelb, S.T.; Mostafaa, B.B.; El-Shahat, M.F.: Removal of Pb, Cd, Cu and Ni from aqueous solution using nano scale zero valent iron particles. J. Environ. Chem. Eng. 4, 2196–2206 (2016)

    Article  Google Scholar 

  25. Zhu, Y.; Li, H.; Zhang, G.; Meng, F.; Li, L.; Wu, S.: Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: acid washing, nanoscale zero-valent iron and ferric iron loading. Bioresour. Technol. 261, 142–150 (2018)

    Article  Google Scholar 

  26. Barreto-Rodrigues, M.; Silveira, J.; Zazo, J.A.; Rodriguez, J.J.: Synthesis, characterization and application of nanoscale zero-valent iron in the degradation of the azo dye Disperse Red 1. J. Environ. Chem. Eng. 5, 628–634 (2017)

    Article  Google Scholar 

  27. Shojaei, S.; Shojaei, S.: Optimization of process variables by the application of response surface methodology for dye removal using nanoscale zero-valent iron. Int. J. Environ. Sci. Technol. 16, 4601–4610 (2019)

    Article  Google Scholar 

  28. Simsek, U.B.; Turabik, M.: Decolorization mechanisms of an anionic dye by using zero-valent iron nanoparticles: application of response surface modeling for the optimization process. Desalination Water Treat. 81, 303–314 (2017)

    Article  Google Scholar 

  29. Fan, J.; Guo, Y.; Wang, J.; Fan, M.: Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. J. Hazard. Mater. 166, 904–910 (2009)

    Article  Google Scholar 

  30. Saxe, J.P.; Lubenow, B.L.; Chiu, P.C.; Huang, C.P.; Cha, D.K.: Enhanced biodegradation of azo dyes using an integrated elemental iron-activated sludge system: I. Evaluation of system performance. Water Environ. Res. 78, 19–25 (2006)

    Article  Google Scholar 

  31. Chang, M.C.; Shu, H.Y.; Yu, H.H.; Sung, Y.C.: Reductive decolourization and total organic carbon reduction of the diazo dye CI Acid Black 24 by zero-valent iron powder. J. Chem. Technol. Biotechnol. 81, 1259–1266 (2006)

    Article  Google Scholar 

  32. Sravanthi, K.; Ayodhya, D.; Swamy, P.Y.: Green synthesis, characterization of biomaterial-supported zero-valent iron nanoparticles for contaminated water treatment. J. Anal. Sci. Technol. 9, 1–11 (2018)

    Article  Google Scholar 

  33. Liu, Y.; Zhang, Y.; Lan, S.; Hou, S.: Migration experiment and numerical simulation of modified nanoscale zerovalent iron (nZVI) in porous media. J. Hydrol. 579, 1–11 (2019)

    Google Scholar 

  34. Machado, S.; Pacheco, J.G.; Nouws, H.P.A.; Albergaria, J.T.; Delerue-Matos, C.: Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci. Total Environ. 533, 76–81 (2015)

    Article  Google Scholar 

  35. Chang, C.; Lian, F.; Zhu, L.: Simultaneous adsorption and degradation of gamma-HCH by nZVI/Cu bimetallic nanoparticles with activated carbon support. Environ. Pollut. 159, 2507–2514 (2011)

    Article  Google Scholar 

  36. Qiu, M.; Chen, C.: Treatment of dye C.I. Reactive Red 15 in aqueous solution using the activated carbon supported zero valent iron. Nat. Environ. Pollut. Technol. 17, 949–952 (2018)

    Google Scholar 

  37. Kim, S.A.; Kamala-Kannan, S.; Lee, K.J.; Park, Y.J.; Shea, P.J.; Lee, W.H.; Kim, H.M.; Oh, B.T.: Removal of Pb(II) from aqueous solution by a zeolite nanoscale zero-valent iron composite. Chem. Eng. J. 217, 54–60 (2013)

    Article  Google Scholar 

  38. Lin, Y.; Chen, Z.; Chen, Z.; Megharaj, M.; Naidu, R.: Decoloration of acid violet red B by bentonite-supported nanoscale zero-valent iron: reactivity, characterization, kinetics and reaction pathway. Appl. Clay Sci. 93–94, 56–61 (2014)

    Article  Google Scholar 

  39. Li, Z.; Dong, H.; Zhang, Y.; Li, J.; Li, Y.: Enhanced removal of Ni(II) by nanoscale zero valent iron supported on Na-saturated bentonite. J. Colloid Interface Sci. 497, 43–49 (2017)

    Article  Google Scholar 

  40. Shahwan, T.; Üzüm, Ç.; Eroğlu, A.E.; Lieberwirth, I.: Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions. Appl. Clay Sci. 47, 257–262 (2010)

    Article  Google Scholar 

  41. Zhang, X.; Lin, S.; Lu, X.Q.; Chen, Z.: Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chem. Eng. J. 163, 243–248 (2010)

    Article  Google Scholar 

  42. Wang, J.; Liu, G.; Zhou, C.; Li, T.; Liu, J.: Synthesis, characterization and aging study of kaolinite-supported zero-valent iron nanoparticles and its application for Ni(II) adsorption. Mater. Res. Bull. 60, 421–432 (2014)

    Article  Google Scholar 

  43. Jin, X.; Chen, Z.; Zhou, R.; Chen, Z.: Synthesis of kaolin supported nanoscale zero-valent iron and its degradation mechanism of Direct Fast Black G in aqueous solution. Mater. Res. Bull. 61, 433–438 (2015)

    Article  Google Scholar 

  44. Fang, S.; Yang, N.; Qiu, M.; Huang, C.: Degradation of dye C.I. Reactive Red 15 in aqueous solution by kaolinite supported zero valent iron. Nat. Environ. Pollut. Technol. 18, 963–968 (2019)

    Google Scholar 

  45. Jalees, M.I.; Farooq, M.U.; Basheer, S.; Asghar, S.: Removal of heavy metals from drinking water using chikni mitti (kaolinite): isotherm and kinetics. Arab. J. Sci. Eng. 44, 6351–6359 (2019)

    Article  Google Scholar 

  46. Zhang, X.; Lin, S.; Chen, Z.; Megharaj, M.; Naidu, R.: Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: reactivity, characterization and mechanism. Water Res. 45, 3481–3488 (2011)

    Article  Google Scholar 

  47. Chen, Z.; Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R.: Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution. J. Colloid Interface Sci. 398, 59–66 (2013)

    Article  Google Scholar 

  48. Stefaniuk, M.; Oleszczuk, P.; Ok, Y.S.: Review on nano zero valent iron (nZVI): from synthesis to environmental applications. Chem. Eng. J. 287, 618–632 (2016)

    Article  Google Scholar 

  49. Machado, S.; Pacheco, J.G.; Nouws, H.P.A.; Albergaria, J.T.; Delerue-Matos, C.: Green zero-valent iron nanoparticles for the degradation of amoxicillin. Int. J. Environ. Sci. Technol. 14, 1109–1118 (2017)

    Article  Google Scholar 

  50. Kumar, R.; Singh, N.; Pandey, S.N.: Potential of green synthesized zero-valent iron nanoparticles for remediation of lead-contaminated water. Int. J. Environ. Sci. Technol. 12, 3943–3950 (2015)

    Article  Google Scholar 

  51. Fahmy, H.M.; Mohamed, F.M.; Marzouq, M.; El-Din Mustafa, A.B.; Alsoudi, A.M.; Ali, O.A.; Mohamed, M.A.; Mahmoud, F.A.: Review of green methods of iron nanoparticles synthesis and applications. Bionanoscience 8, 491–503 (2018)

    Article  Google Scholar 

  52. Devatha, C.P.; Thalla, A.K.; Katte, S.Y.: Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J. Clean. Prod. 139, 1425–1435 (2016)

    Article  Google Scholar 

  53. Kheshtzar, R.; Berenjian, A.; Ganji, N.; Taghizadeh, S.M.; Maleki, M.; Taghizadeh, S.; Ghasemi, Y.; Alireza, E.: Response surface methodology and reaction optimization to product zero-valent iron nanoparticles for organic pollutant remediation. Biocatal. Agric. Biotechnol. 21, 1–8 (2019)

    Article  Google Scholar 

  54. Huang, L.; Weng, X.; Chen, Z.; Megharaj, M.; Naidu, R.: Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity. Spectrochim. Acta, Part A 130, 295–301 (2014)

    Article  Google Scholar 

  55. Tandon, P.K.; Shukla, R.C.; Singh, S.B.: Removal of arsenic(III) from water with clay-supported zerovalent iron nanoparticles synthesized with the help of tea liquor. Ind. Eng. Chem. Res. 52, 10052–10058 (2013)

    Article  Google Scholar 

  56. Truskewycz, A.; Shukla, R.; Ball, A.S.: Iron nanoparticles synthesized using green tea extracts for the fenton-like degradation of concentrated dye mixtures at elevated temperatures. J. Environ. Chem. Eng. 4, 4409–4417 (2016)

    Article  Google Scholar 

  57. Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R.: Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ. 466–467, 210–213 (2014)

    Article  Google Scholar 

  58. Machado, S.; Stawiński, W.; Slonina, P.; Pinto, A.R.; Grosso, J.P.; Nouws, H.P.A.; Albergaria, J.T.; Delerue-Matos, C.: Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Sci. Total Environ. 461–462, 323–329 (2013)

    Article  Google Scholar 

  59. Mystrioti, C.; Xanthopoulou, T.D.; Tsakiridis, P.; Papassiopi, N.; Xenidis, A.: Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction. Sci. Total Environ. 539, 105–113 (2016)

    Article  Google Scholar 

  60. Eslami, S.; Ebrahimzadeh, M.A.; Biparva, P.: Green synthesis of safe zero valent iron nanoparticles by Myrtus communis leaf extract as an effective agent for reducing excessive iron in iron-overloaded mice, a thalassemia model. RSC Adv. 8, 26144–26155 (2018)

    Article  Google Scholar 

  61. Pattanayak, M.; Mohapatra, D.; Nayak, P.L.: Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Syzygium aromaticum (clove). Middle East J. Sci. Res. 18, 623–626 (2013)

    Google Scholar 

  62. Rajendrakumar, N.; Vasantha, K.; Murugan, M.; Mohan, V.R.: Antioxidant activity of tuber of Ruellia tuberosa L. (Acanthaceae). Int. J. Pharmacogn. Phytochem. Res. 6, 97–103 (2014)

    Google Scholar 

  63. Singh, M.; Dasgupta, M.; Biswas, S.: Leaf extract of cracker plant (Ruellia tuberosa Linn) induces metal chelating activity and DNA strands break: implications for its antioxidant-prooxidant property. Orient. Pharm. Exp. Med. 15, 319–325 (2015)

    Article  Google Scholar 

  64. Chen, F.A.; Wu, A.B.; Shieh, P.; Kuo, D.H.; Hsieh, C.Y.: Evaluation of the antioxidant activity of Ruellia tuberosa. Food Chem. 94, 14–18 (2006)

    Article  Google Scholar 

  65. Cheong, B.E.; Waslim, M.Z.; Lem, F.F.; Teoh, P.L.: Antioxidant and anti-proliferative activities of Sabah Ruellia tuberosa. J. Appl. Pharm. Sci. 3, 20–24 (2013)

    Google Scholar 

  66. Phakeovilay, C.; Disadee, W.; Sahakitpichan, P.; Sitthimonchai, S.; Kittakoop, P.; Ruchirawat, S.; Kanchanapoom, T.: Phenylethanoid and flavone glycosides from Ruellia tuberosa L. J. Nat. Med. 67, 228–233 (2013)

    Article  Google Scholar 

  67. Hashim, K.S.; Hussein, A.H.; Zubaidi, S.L.; Kot, P.; Kraidi, L.; Alkhaddar, R.; Shaw, A.; Alwash, R.: Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. J. Phys: Conf. Ser. 1294, 072017 (2019)

    Google Scholar 

  68. Nagajyothi, P.; Pandurangan, M.; Kim, D.H.; Sreekanth, T.; Shim, J.: Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. J. Cluster Sci. 28, 245–257 (2017)

    Article  Google Scholar 

  69. Zghari, B.; Doumenq, P.; Romane, A.; Boukir, A.: GC-MS, FTIR and 1H, 13C NMR structural analysis and identification of phenolic compounds in olive mill wastewater extracted from oued oussefrou effluent (Beni Mellal-Morocco). J. Mater. Environ. Sci. 8, 4496–4509 (2017)

    Google Scholar 

  70. Senthilkumar, S.R.; Sivakumar, T.: Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Int. J. Pharm. Pharm. Sci. 6, 461–465 (2014)

    Google Scholar 

  71. Khoo, L.W.; Mediani, A.; Zolkeflee, N.K.Z.; Leong, S.W.; Ismail, I.S.; Khatib, A.; Shaari, K.; Abas, F.: Phytochemical diversity of Clinacanthus nutans extracts and their bioactivity correlations elucidated by NMR based metabolomics. Phytochem. Lett. 14, 123–133 (2015)

    Article  Google Scholar 

  72. Pariyani, R.; Ismail, I.S.; Azam, A.A.; Abas, F.; Shaari, K.: Identification of the compositional changes in Orthosiphon stamineus leaves triggered by different drying techniques using 1H NMR metabolomics. J. Sci. Food Agric. 97, 4169–4179 (2017)

    Article  Google Scholar 

  73. Mystrioti, C.; Sparis, D.; Papasiopi, N.; Xenidis, A.; Dermatas, D.; Chrysochoou, M.: Assessment of polyphenol coated nano zero valent iron for hexavalent chromium removal from contaminated waters. Bull. Environ. Contam. Toxicol. 94, 302–307 (2015)

    Article  Google Scholar 

  74. Khan, M.I.; Khan, H.U.; Azizli, K.; Sufian, S.; Man, Z.; Siyal, A.A.; Muhammad, N.; Faiz ur Rehman, M.: The pyrolysis kinetics of the conversion of Malaysian kaolin to metakaolin. Appl. Clay Sci. 146, 152–161 (2017)

    Article  Google Scholar 

  75. Singhal, R.K.; Gangadhar, B.; Basu, H.; Manisha, V.; Naidu, G.R.K.; Reddy, A.V.R.: Remediation of malathion contaminated soil using zero valent iron nano-particles. Am. J. Anal. Chem. 3, 76–82 (2012)

    Article  Google Scholar 

  76. dos Santos, F.S.; Lago, F.R.; Yokoyama, L.; Fonseca, F.V.: Synthesis and characterization of zero-valent iron nanoparticles supported on SBA-15. J. Mater. Res. Technol. 6, 178–183 (2017)

    Article  Google Scholar 

  77. Su, L.; Liu, C.; Liang, K.; Chen, Y.; Zhang, L.; Li, X.; Han, Z.; Zhen, G.; Chai, X.; Sun, X.: Performance evaluation of zero-valent iron nanoparticles (NZVI) for high-concentration H2S removal from biogas at different temperatures. RSC Adv. 8, 13798–13805 (2018)

    Article  Google Scholar 

  78. Üzüm, Ç.; Shahwan, T.; Eroğlu, A.E.; Hallam, K.R.; Scott, T.B.; Lieberwirth, I.: Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl. Clay Sci. 43, 172–181 (2009)

    Article  Google Scholar 

  79. Yahaya, S.; Jikan, S.S.; Badarulzaman, N.A.; Adamu, A.D.: Chemical composition and particle size analysis of kaolin. Traektoriâ Nauki Path Sci. 3, 1001–1004 (2017)

    Article  Google Scholar 

  80. Mohsen, Q.; El-maghraby, A.: Characterization and assessment of Saudi clays raw material at different area. Arab. J. Chem. 3, 271–277 (2010)

    Article  Google Scholar 

  81. Chang, S.H.; Wang, K.S.; Chao, S.J.; Peng, T.H.; Huang, L.C.: Degradation of azo and anthraquinone dyes by a low-cost Fe0/air process. J. Hazard. Mater. 166, 1127–1133 (2009)

    Article  Google Scholar 

  82. He, Y.; Gao, J.F.; Feng, F.Q.; Liu, C.; Peng, Y.Z.; Wang, S.Y.: The comparative study on the rapid decolorization of azo, anthraquinone and triphenylmethane dyes by zero-valent iron. Chem. Eng. J. 179, 8–18 (2012)

    Article  Google Scholar 

  83. Lin, Y.T.; Weng, C.H.; Chen, F.T.: Effective removal of AB24 dye by nano/micro-size zero-valent iron. Sep. Purif. Technol. 64, 26–30 (2008)

    Article  Google Scholar 

  84. Venkatapathy, R.; Bessingpas, D.G.; Canonica, S.; Perlinger, J.A.: Kinetics models for trichloroethylene transformation by zero-valent iron. Appl. Catal. B Environ. 37, 139–159 (2002)

    Article  Google Scholar 

  85. Zhang, H.; Jiang, M.; Wang, Z.Q.; Wu, F.: Decolorisation of CI Reactive Black 8 by zero-valent iron powder with/without ultrasonic irradiation. Color. Technol. 123, 203–208 (2007)

    Article  Google Scholar 

  86. Mbarek, W.B.; Azabou, M.; Pineda, E.; Fiol, N.; Escoda, L.; Suñol, J.J.; Khitouni, M.: Rapid degradation of azo-dye using Mn-Al powders produced by ball-milling. RSC Adv. 7, 12620–12628 (2017)

    Article  Google Scholar 

  87. Deng, H.; Zhang, C.; Jiang, Y.; Ma, Z.; Mao, Z.: Reductive performance of ZVI/Cu polyscale particle to decolorize reactive black 5. Microsc. Res. Tech. 82, 134–143 (2019)

    Article  Google Scholar 

  88. Oliver-Tolentino, M.A.; Jiménez-Álvarez, E.; de Jesús Martínez-Ortiz, M.; García-Báez, E.; Franco-Hernández, M.O.; Guzmán-Vargas, A.: Effective electro-fenton degradation of reactive black 5 dye using modified electrode with Cu-zeolites. J. New Mater. Electrochem. Syst. 17, 71–75 (2014)

    Article  Google Scholar 

  89. Nisar, N.; Aleem, A.; Saleem, F.; Aslam, F.; Shahid, A.; Chaudhry, H.; Malik, K.; Albaser, A.; Iqbal, A.; Qadri, R.; Yang, Y.: Reduction of reactive red 241 by oxygen insensitive azoreductase purified from a novel strain Staphylococcus KU898286. PLoS ONE 12, 1–18 (2017)

    Article  Google Scholar 

  90. Asses, N.; Ayed, L.; Hkiri, N.; Hamdi, M.: Congo red decolorization and detoxification by Aspergillus niger: removal mechanisms and dye degradation pathway. Biomed. Res. Int. 2018, 1–9 (2018)

    Article  Google Scholar 

  91. Ahangaran, F.; Hassanzadeh, A.; Nouri, S.: urface modification of Fe3O4@SiO2 microsphere by silane coupling agent. Int. Nano Lett. 3, 1–5 (2013)

    Article  Google Scholar 

  92. Quintelas, C.; Figueiredo, H.; Tavares, T.: The effect of clay treatment on remediation of diethylketone contaminated wastewater: uptake, equilibrium and kinetic studies. J. Hazard. Mater. 186, 1241–1248 (2011)

    Article  Google Scholar 

  93. Sharma, G.; Jeevanandam, P.: Synthesis of self-assembled prismatic iron oxide nanoparticles by a novel thermal decomposition route. RSC Adv. 3, 189–200 (2013)

    Article  Google Scholar 

  94. Shin, M.C.; Choi, H.D.; Kim, D.H.; Baek, K.: Effect of surfactant on reductive dechlorination of trichloroethylene by zero-valent iron. Desalination 223, 299–307 (2008)

    Article  Google Scholar 

  95. Shi, L.; Zhang, X.; Chen, Z.: Removal of chromium(VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res. 45, 886–892 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Faculty of Science and Technology, Prince of Songkla University, for the instruments and facilities used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uraiwan Khunjan.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khunjan, U., Kasikamphaiboon, P. Green Synthesis of Kaolin-Supported Nanoscale Zero-Valent Iron Using Ruellia tuberosa Leaf Extract for Effective Decolorization of Azo Dye Reactive Black 5. Arab J Sci Eng 46, 383–394 (2021). https://doi.org/10.1007/s13369-020-04831-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04831-w

Keywords

Navigation