Skip to main content

Advertisement

Log in

A passive video-rate terahertz human body imager with real-time calibration for security applications

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Real-time video-rate passive terahertz imaging systems are highly demanded for practical applications, especially in security checking. Here, we demonstrate a passive video-rate terahertz human body imaging system, which was mainly consisted of a scanning module, a quasi-optical lens, a calibration module and a one-dimensional terahertz detector array. The terahertz waves radiated from human bodies in front of the imager can transmit through a terahertz window into the imager, and were reflected by the scanning module, and then focused on the detector array by the quasi-optical lens. A calibration module was also designed to calibrate the terahertz detectors in real-time without disturbing the imaging process. In combination of the scanning module with the detector array, the imager can obtain a full image of a human body standing at a distance of 1.5 m in front of the imager with a resolution of 1.5 cm and a frame rate of 10 fps. The imaging system can discover suspected dangerous items carried on the human body such as metals, ceramics, powders and liquids. Furthermore, an intelligent terahertz imaging algorithm employing convolutional neural network was also successfully realized based on the terahertz images produced by this system to improve the image quality and mark the detected items automatically. We believe our real-time video-rate terahertz imaging techniques and systems not only have great values for further inspiring developing terahertz imaging systems but also can accelerate the terahertz technology towards more practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photon. 1, 97–105 (2007)

    Article  ADS  Google Scholar 

  2. S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C.A. Schmuttenmaer, T.L. Cocker, R. Huber, A.G. Markelz, Z.D. Taylor, V.P. Wallace, J.A. Zeitler, J. Sibik, T.M. Korter, B. Ellison, S. Rea, P. Goldsmith, K.B. Cooper, R. Appleby, D. Pardo, P.G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stöhr, M. Naftaly, N. Ridler, R. Clarke, J.E. Cunningham, M.B. Johnston, The 2017 terahertz science and technology roadmap. J. Phys. D. 50, 043001 (2017)

    Article  ADS  Google Scholar 

  3. J.E. Bjarnason, T.L.J. Chan, A.W.M. Lee, M.A. Celis, E.R. Brown, Millimeter-wave, terahertz, and mid-infrared transmission through common clothing. Appl. Phys. Lett. 85(4), 519–521 (2004)

    Article  ADS  Google Scholar 

  4. M. Kowalski, Hidden object detection and recognition in passive terahertz and mid-wavelength infrared. J. Infrared Millim. Terahz. Waves 40, 1074–1091 (2019)

    Article  Google Scholar 

  5. J. Accardo, M.A. Chaudhry, Radiation exposure and privacy concerns surrounding full-body scanners in airports. J. Radiat. Res. Appl. Sci. 7(2), 198–200 (2014)

    Article  Google Scholar 

  6. S. Yeom, D.S. Lee, J.Y. Son, M.K. Jung, Y. Jang, S.W. Jung, S.J. Lee, Real-time outdoor concealed-object detection with passive millimeter wave imaging. Opt. Express 19(3), 2530–2536 (2011)

    Article  ADS  Google Scholar 

  7. E. Heinz, T. May, D. Born, G. Zieger, S. Anders, V. Zakosarenko, M. Schubert, T. Krause, A. Krüger, M. Schulz, H.G. Meyer, Towards high-sensitivity and high-resolution submillimeter-wave video imaging. Proc. SPIE 8022, 802204 (2011)

    Article  Google Scholar 

  8. W. AlSaafin, S. Villena, M. Vega, R. Molina, A.K. Katsaggelos, Compressive sensing super resolution from multiple observations with application to passive millimeter wave images. Digit. Signal Process. 50, 180–190 (2016)

    Article  Google Scholar 

  9. L. Qiao, Y. Wang, Z. Shen, Z. Zhao, Z. Chen, Compressive sensing for direct millimeter-wave holographic imaging. Appl. Opt. 54(11), 3280–3289 (2015)

    Article  ADS  Google Scholar 

  10. K.B. Cooper, R.J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, P.H. Siegel, Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar. IEEE Trans. Microw. Theory Tech. 56(12), 2771–2778 (2008)

    Article  ADS  Google Scholar 

  11. K.B. Cooper, R.J. Dengler, N. Llombart, A. Talukder, A.V. Panangadan, C.S. Peay, I. Mehdi, P.H. Siegel, Fast, high-resolution terahertz radar imaging at 25 meters. Proc. SPIE 7671, 76710Y (2010)

    Article  ADS  Google Scholar 

  12. S. Gu, C. Li, X. Gao, Z. Sun, G. Fang, Terahertz aperture synthesized imaging with fan-beam scanning for personnel screening. IEEE Trans. Microw. Theory Tech. 60(12), 3877–3885 (2012)

    Article  ADS  Google Scholar 

  13. D.M. Sheen, D.L. McMakin, T.E. Hall, Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans. Microw. Theory Tech. 49(9), 1581–1592 (2001)

    Article  ADS  Google Scholar 

  14. S.S. Ahmed, A. Schiessl, L.P. Schmidt, A novel fully electronic active real-time imager based on a planar multistatic sparse array. IEEE Trans. Microw. Theory Tech. 59(12), 3567–3576 (2011)

    Article  ADS  Google Scholar 

  15. W. Caba, G. Boreman, Active sparse-aperture millimeter-wave imaging using digital correlators. J. Infrared Millim. Terahz. Waves 32, 434–450 (2011)

    Article  Google Scholar 

  16. N. Karpowicz, H. Zhong, C. Zhang, K.I. Lin, J.S. Hwang, J. Xu, X.C. Zhang, Compact continuous-wave subterahertz system for inspection applications. Appl. Phys. Lett. 86, 054105 (2005)

    Article  ADS  Google Scholar 

  17. Y. Meng, A. Qing, C. Lin, J. Zang, Y. Zhao, C. Zhang, Passive millimeter wave imaging system based on helical scanning. Sci. Rep. 8, 7852 (2018)

    Article  ADS  Google Scholar 

  18. R. Li, C. Li, H. Li, S. Wu, G. Fang, Study of Automatic detection of concealed targets in passive terahertz images for intelligent security screening. IEEE Trans. Terahertz Sci. Techol. 9(2), 165–176 (2019)

    Article  ADS  Google Scholar 

  19. H. Sato, K. Sawaya, K. Mizuno, J. Uemura, M. Takeda, J. Takahashi, K. Yamada, K. Morichika, T. Hasegawa, H. Hirai, H. Niikura, T. Matsuzaki, S. Kato, J. Nakada, Passive millimeter-wave imaging for security and safety applications. Proc. SPIE 7671, 76710V (2010)

    Article  ADS  Google Scholar 

  20. S. Rowe, E. Pascale, S. Doyle, C. Dunscombe, P.r Hargrave, A. Papageorgio, K. Wood, P. A. R. Ade, P. Barry, A. Bideaud, T. Brien, C. Dodd, W. Grainger, J. House, P. Mauskopf, P. Moseley, L. Spencer, R. Sudiwala, C. Tucker, and I. Walker, A passive terahertz video camera based on lumped element kinetic inductance detectors, Rev. Sci. Instrum. 87, 033105 (2016)

  21. X. Shen, C.R. Dietlein, E. Grossman, Z. Popovic, F.G. Meyer, Detection and segmentation of concealed objects in terahertz images. IEEE Trans. Image Process. 17(12), 2465–2475 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. W. Yu, X. Chen, L. Wu, Segmentation of concealed objects in passive millimeter-wave images based on the Gaussian mixture model. J. Infrared Millim. Terahz. Waves 36(4), 400–421 (2015)

    Article  Google Scholar 

  23. S. López-Tapia, R. Molina, N.P. de la Blanca, Using machine learning to detect and localize concealed objects in passive millimeter-wave images. Eng. Appl. Artif. Intell. 67, 81–90 (2018)

    Article  Google Scholar 

  24. S. López-Tapia, R. Molina, N.P. de la Blanca, Deep CNNs for object detection using passive millimeter sensors. IEEE Trans. Circuits Syst. Video Technol. 29(9), 2580–2589 (2019)

    Article  Google Scholar 

  25. M. Kowalski, Real-time concealed object detection and recognition in passive imaging at 250 GHz. Appl. Opt. 58(12), 3134–3140 (2019)

    Article  ADS  Google Scholar 

  26. J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement”, https://pjreddie.com/yolo/

Download references

Acknowledgements

This work is supported by National Key Research and Development Program of China (2016YFC0800505, 2016YFC0800508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., An, D., Tu, H. et al. A passive video-rate terahertz human body imager with real-time calibration for security applications. Appl. Phys. B 126, 143 (2020). https://doi.org/10.1007/s00340-020-07496-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07496-3

Navigation