Skip to main content
Log in

Improved in vitro development of Epidendrum secundum (Orchidaceae) by using aqueous extract of the seaweed Kappaphycus alvarezii (Rhodophyta, Solieriaceae)

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Orchidaceae is one of the largest plant families and includes species with high economic, ecological, and medicinal importance. Orchid seeds are produced in high amounts; however, these seeds show low germination percentage and have specific germination requirements. To enhance the germination and development of orchids, in vitro techniques have been successfully applied. Natural extracts can be used as a biostimulant in the culture medium, showing improved germination, elongation, and rooting. Thus, the main objective of this study was to determine the effects of Kappaphycus alvarezii aqueous extract in the in vitro development of Epidendrum secundum, evaluating its influence on plantlet morphoanatomy. The K. alvarezii extract was also characterized by nuclear magnetic resonance (NMR) spectroscopy. E. secundum plantlets obtained after the in vitro germination were subjected to in vitro elongation experiment in the presence of K. alvarezii extract (0, 6, 12, 25, 50, and 100 mg L− 1). Our results indicated that the aqueous extract of K. alvarezii has a positive effect, stimulating rooting, plantlet development, fresh mass gain, and newly formed shoots of E. secundum plantlets, mainly at 50 mg L− 1 concentration. The use of K. alvarezii extract indicates potential application in tissue culture and plant production, due to its biostimulating effect on plants. Considering the great market demand for new technologies and the growing interest in the application of marine resources, our results present relevant data on the biostimulating potential of this extract, which can be successfully applied for the cultivation of other species of orchids and species of ecological and economic interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421

    Google Scholar 

  • Ascêncio SD, Orsato A, França RA, Duarte ME, Noseda MD (2006) Complete 1H and 13C NMR assignment of digeneaside, a low-molecular-mass carbohydrate produced by red seaweeds. Carbohyd Res 341:677–682

    Google Scholar 

  • Barrow KD, Karsten U, King RJ (1993) Isothionic acid from the marine red alga Ceramium flaccidum. Phytochem 34:1429–1430

    CAS  Google Scholar 

  • Blunden G (1977) Cytokinin activity of seaweed extracts. In: Faulkner DJ, Fenical WH (eds) Marine natural products chemistry. Plenum, New York, pp 337–344

    Google Scholar 

  • Brasil (2014) Lista nacional oficial de espécies da fauna ameaçadas de extinção. Diário Oficial da União 245:121–126

    Google Scholar 

  • Chugh S, Guha S, Rao IU (2009) Micropropagation of orchids: a review on the potential of different explants. Sci Hort 122:507–520

    CAS  Google Scholar 

  • Crouch IJ, Van Staden J (1993) Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul 13:21–29

    CAS  Google Scholar 

  • da Costa MA, Alves HJ, Alab JC, Albrecht LP, Albrecht AJP, Marra BM (2017) Kappaphycus alvarezii extract used for the seed treatment of soybean culture. Afr J Agric Res 12:1054–1058

    Google Scholar 

  • Dapper TB, Pujarra S, Oliveira AJ, Oliveira FGO, Paulert R (2014) Potencialidades das macroalgas marinhas na agricultura: revisão. Revista em Agronegócios e Meio Ambiente 7:295–313

    Google Scholar 

  • Diyana AF, Abdullah A, Hisham ZAS, Chan KM (2015) Antioxidant activity of red algae Kappaphycus alvarezii and Kappaphycus striatum. Int Food Res J 22:1977–1984

    Google Scholar 

  • Dressler RL (2005) How many orchid species? Selbyana 26:155–158

    Google Scholar 

  • Flora do Brasil (2020) Flora do Brasil 2020 under construction. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/. Accessed 2 Mar 2020

  • George EF, Hall MA, Klerk GD (2008) Plant propagation by tissue culture. The Background, 3rd edn. Springer, Dordrecht, p 501

    Google Scholar 

  • Goel MK, Kukreja AK, Singh AK, Khanuja SPS (2007) In vitro plant growth promoting activity of phyllocladane diterpenoids isolated from Callicarpa macrophylla Vahl. In shoot cultures of Rauwolfia serpentina. Nat Prod Commun 2:799–802

    CAS  Google Scholar 

  • Hagemann M, Pade N (2015) Heterosides—compatible solutes occurring in prokaryotic and eukaryotic phototrophs. Plant Biol 17:927–934

    CAS  PubMed  Google Scholar 

  • Hellio C, Simon-Colin C, Clare AS, Deslandes E (2004) Isethionic Acid and Floridoside Isolated from the Red Alga, Grateloupia turuturu, Inhibit Settlement of Balanus amphitrite Cyprid Larvae. Biofouling 20:139–145

    CAS  PubMed  Google Scholar 

  • Jayaraj J, Wan A, Rahman M, Punja ZK (2008) Seaweed extracts reduces foliar fungal disease on carrot. Crop Prot 27:1360–1366

    Google Scholar 

  • Johansen B, Rasmussen H (1992) Ex situ conservations of orchids. Opera Botanica 113:43–48

    Google Scholar 

  • Kanatt SR, Lahare P, Chawla SP, Sharma A (2015) Kappaphycus alvarezii: its antioxidant potential and use in bioactive packaging films. J Microbiol Biotech Food Sci 5:1–6

    CAS  Google Scholar 

  • Karthikeyan K, Shanmugam M (2017) The effect of potassium-rich biostimulant from seaweed Kappaphycus alvarezii on yield and quality of cane and cane juice of sugarcane var. Co 86032 under plantation and ratoon crops. J Appl Phycol 29:3245–3252

    CAS  Google Scholar 

  • Kumar KS, Ganesan K, Rao PVS (2008) Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty—an edible seaweed. Food Chem 107:289–295

    CAS  Google Scholar 

  • Lo SF, Nalawade SM, Kuo Chen CL, Tsay HS (2004) Asymbiotic germination of immature seeds, plantlet development and ex vitro establishment of plantlets of Dendrobium tosaense Makino—a medicinally important orchid. Vitro Cell Dev Biol Plant 40:528–535

    Google Scholar 

  • Massaro R, Cordeiro GM, Leal TS, Moraes CP (2012) Avaliação do desenvolvimento in vitro de Epidendrum secundum Jacq. em meios de cultivo simplificados. Revista em Agronegócio e Meio Ambiente 5:337–351

    Google Scholar 

  • Mondal D, Ghosh A, Prasad K, Singh S, Bhatt N, Zodape ST, Chaudhary JP, Chaudhari J, Chatterjee PB, Seth A, Ghosh PK (2015) Elimination of gibberellin from Kappaphycus alvarezii seaweed sap foliar spray enhances corn stover production without compromising the grain yield advantage. Plant Growth Regul 75:657–666

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    CAS  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue. Protoplasma 59:367–373

    Google Scholar 

  • Oliveira VC, Sajo MG (1999) Anatomia foliar de espécies epífitas de Orchidaceae. Revista brasileira de Botânica 22:365–374

    Google Scholar 

  • Palma D, Schuelter AR, Stefanello S, Fortes AMT (2011) Aspectos morfofisiológicos e controle da hiperhidricidade na cultura de tecidos vegetais. Rev Bras Agrociência 1:174–184

    Google Scholar 

  • Pan MJ, Van Staden J (1998) The use of charcoal in in vitro culture—a review. Plant Growth Regul 26:155–163

    CAS  Google Scholar 

  • Pinheiro F, Barros F (2007) Morphometric analysis of Epidendrum secundum (Orchidaceae) in southeastern Brazil. Nordic J Bot 25:129–136

    Google Scholar 

  • Rani SMV, Evanjaline M (2015) Effect of Kappaphycus alvarezii SLF on Growth and Biochemicals in Morus Alba L. and Bombyx Mori L. Int J Res Stud Biosci 3:47–52

    Google Scholar 

  • Rathore S (2009) Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. S Afr J Bot 75:351–355

    CAS  Google Scholar 

  • Rayorath P, Khan W, Palanisamy R, MacKinnon SL, Stefanova R, Hankins SD, Critchley AT, Prithiviraj B (2008) Extracts of the brown seaweed Ascophyllum nodosum induce gibberellic acid (GA3)-independent amylase activity in barley. J Plant Growth Regul 27:370–379

    CAS  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Cons 142:114–1153

    Google Scholar 

  • Silva IV, Meira RMSA, Azevedo AA, Euclydes RMA (2006) Estratégias anatômicas foliares de treze espécies de Orchidaceae ocorrentes em um campo de altitude no Parque Estadual da Serra do Brigadeiro (PESB): MG, Brasil. Acta Botanica Brasilica 20:741–750

    Google Scholar 

  • Simon-Colin C, Kervarec N, Pichon R, Deslandes E (2002a) Complete 1H and 13C spectral assignment of floridoside. Carbohyd Res 337:279–280

    CAS  Google Scholar 

  • Simon-Colin C, Kervarec N, Pichon R, Deslandes E (2002b) Characterization of N-methyl-L-methionine sulfoxide and isethionic acid from the red alga Grateloupia doryphora. Phycol Res 50:125–128

    CAS  Google Scholar 

  • Souza MF, Pereira EO, Martins MQ, Coelho RI, Junior OSP (2012) Efeito do extrato de Cyperus rotundus na rizogênese. Revista de Ciências Agrárias 35:157–162

    Google Scholar 

  • Stancik JF, Goldenberg R, Barros F (2009) O gênero Epidendrum L. (Orchidaceae) no Estado do Paraná. Brasil Acta Botanica Brasilica 23:864–880

    Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 104:543–556

    PubMed  PubMed Central  Google Scholar 

  • Thangavelu M, Muthu S (2017) Vegetative anatomical adaptations of Epidendrum radicans (Epidendroideae, Orchidaceae) to epiphytic conditions of growth. Mod Phytomorphol 11:117–130

    Google Scholar 

  • Tuhy L, Chojnacka K (2015) Seaweed extract by microwave assisted extraction as plant growth biostimulant. Open Chem 13:1183–1195

    Google Scholar 

  • Yoon JJ, Kim YJ, Kim SH, Ryu HJ, Choi JY, Kim GS, Shin MK (2010) Production of polysaccharides and corresponding sugars from red seaweed. Adv Mater Res 93:463–466

    Google Scholar 

  • Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Cho I, Kim KH (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Biores Technol 199:311–318

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian funding agencies CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). The authors are grateful to Dr. Leila Hayashi and Msc. Filipe A.S. Neves from Laboratório de Camarões Marinhos Seção de Macroalgas for kindly providing the Kappaphycus alvarezii extract used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Pacheco de Freitas Fraga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that they acted within compliance, in line with all expected ethical standards.

Additional information

Communicated by M. Lambardi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 61 kb)

Supplementary material 2 (JPG 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo Amatuzzi, J.C., do Nascimento Vieira, L., Sant’Anna-Santos, B.F. et al. Improved in vitro development of Epidendrum secundum (Orchidaceae) by using aqueous extract of the seaweed Kappaphycus alvarezii (Rhodophyta, Solieriaceae). Acta Physiol Plant 42, 136 (2020). https://doi.org/10.1007/s11738-020-03129-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03129-6

Keywords

Navigation