Skip to main content

Advertisement

Log in

Influence of annealing temperatures on microstructure evolution and mechanical properties in a low-carbon steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Quenching and partitioning (Q&P) heat treatments with different annealing temperatures and fixed initial quenching temperatures were applied to cold-rolled low-carbon steel with the initial microstructure of ferrite and pearlite, aiming to gain the same amount of austenite (preset value) before the partitioning stage. The chemical compositions of the material have been specially designed, containing 1.6 wt.% silicon and 0.8 wt.% aluminum to avoid the precipitation of carbides. The microstructure evolution of the investigated steel was characterized using a dilatometer, an optical microscope, a scanning electron microscope (SEM), an X-ray diffractometer, an electron backscattered diffraction and transmission electron microscope. Consequently, the microstructure of all samples looks quite similar. At the same time, according to SEM micrographs and dilatometer data, there are competitive reactions in Q&P process, such as the precipitation of carbides, the transformation of bainite and the formation of secondary martensite. Thus, the measured austenite is less than the preset values. Mechanical properties of the material were detected by uniaxial tensile tests. The results indicate that the ultimate tensile strength of the four groups of samples is similar, but the total elongation has a significant downward tendency with the increase in annealing temperatures. After annealing at 840 °C, the steel possesses great ultimate tensile strength of about 1200 MPa and optimum total elongation of about 20.37% with favorable products of strength and elongation of about 24.35 GPa%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Zhou, K. Zhang, Y. Wang, J.F. Gu, Y.H. Rong, Mater. Sci. Eng. A 528 (2011) 8006–8012.

    Article  Google Scholar 

  2. F.G. Caballero, S. Allain, J. Cornide, J.D. Puerta Velásquez, C. Garcia-Mateo, M.K. Miller, Mater. Des. 49 (2013) 667–680.

  3. M.J. Santofimia, L. Zhao, R. Petrov, J. Sietsma, Mater. Charact. 59 (2008) 1758–1764.

    Article  Google Scholar 

  4. J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 8 (2004) 219–237.

    Article  Google Scholar 

  5. J.G. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611–2622.

    Article  Google Scholar 

  6. D.H. Kim, J.G. Speer, H.S. Kim, B.C. De Cooman, Metall. Mater. Trans. A 40 (2009) 2048–2060.

    Article  Google Scholar 

  7. X.D. Tan, Y.B. Xu, X.L. Yang, Z.Q. Liu, D. Wu, Mater. Sci. Eng. A 594 (2014) 149–160.

    Article  Google Scholar 

  8. E.M. Bellhouse, J.R. Mcdermid, Metall. Mater. Trans. A 41 (2010) 1460–1473.

    Article  Google Scholar 

  9. C. Li, F. Li, J.H. Liang, R.H. Cao, Z.Z. Zhao, Mater. Lett. 233 (2018) 314–317.

    Article  Google Scholar 

  10. G.H. Gao, B. Gao, X.L. Gui, J. Hu, J.Z. He, Z.L. Tan, B.Z. Bai, Mater. Sci. Eng. A 753 (2019) 1–10.

    Article  Google Scholar 

  11. A.S. Nishikawa, M.J. Santofimia, J. Sietsma, H. Goldenstein, Acta Mater. 142 (2018) 142–151.

    Article  Google Scholar 

  12. F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, M.J. Santofimia, Acta Mater. 104 (2016) 72–83.

    Article  Google Scholar 

  13. J.H. Kim, S.W. Lee, K. Lee, J.K. Kim, D.W. Suh, JOM 71 (2019) 1366–1374.

    Article  Google Scholar 

  14. E.J. Seo, L. Cho, Y. Estrin, B.C. De Cooman, Acta Mater. 113 (2016) 124–139.

    Article  Google Scholar 

  15. M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Acta Mater. 59 (2011) 6059–6068.

    Article  Google Scholar 

  16. D.T. Pierce, D.R. Coughlin, K.D. Clarke, E. De Moor, J. Poplawsky, D.L. Williamson, B. Mazumder, J.G. Speer, A. Hood, A.J. Clarke, Acta Mater. 151 (2018) 454–469.

    Article  Google Scholar 

  17. P. Huyghe, L. Malet, M. Caruso, C. Georges, S. Godet, Mater. Sci. Eng. A 701 (2017) 254–263.

    Article  Google Scholar 

  18. F.S. LePera, Metallography 12 (1979) 263–268.

    Article  Google Scholar 

  19. H. Li, J.Y. Chen, X.G. Duan, H.T. Jiang, Mater. Rev. 32 (2018) 611–615.

    Google Scholar 

  20. Y.G. Yang, Z.L. Mi, M. Xu, Q. Xiu, J. Li, H.T. Jiang, Mater. Sci. Eng. A 725 (2018) 389–397.

    Article  Google Scholar 

  21. Z.B. Dai, R. Ding, Z.G. Yang, C. Zhang, H. Chen, Acta Mater. 152 (2018) 288–299.

    Article  Google Scholar 

  22. S.K. Liu, J. Zhang, Metall. Trans. A 21 (1990) 1517–1525.

    Article  Google Scholar 

  23. M.J. Santofimia, L. Zhao, J. Sietsma, Metall. Mater. Trans. A 40 (2009) 46–57.

    Article  Google Scholar 

  24. S.H. Sun, A.M. Zhao, Mater. Sci. Technol. 34 (2018) 347–354.

    Article  Google Scholar 

  25. M.J. Santofimia, T. Nguyen-Minh, L. Zhao, R. Petrov, I. Sabirov, J. Sietsma, Mater. Sci. Eng. A 527 (2010) 6429–6439.

    Article  Google Scholar 

  26. M.J. Santofimia, L. Zhao, J. Sietsma, Mater. Sci. Forum 706–709 (2012) 2290–2295.

    Article  Google Scholar 

  27. J. Wu, P.J. Wray, C.I. Garcia, M. Hua, A.J. Deardo, ISIJ Int. 45 (2005) 254–262.

    Article  Google Scholar 

  28. L. Samek, E. De Moor, J. Penning, B.C. De Cooman, Metall. Mater. Trans. A 37 (2006) 109–124.

    Article  Google Scholar 

  29. R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, G.R. Purdy, Acta Mater. 61 (2013) 697–707.

    Article  Google Scholar 

  30. H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, H. Dong, Acta Mater. 59 (2011) 4002–4014.

    Article  Google Scholar 

  31. R. Ding, Z. Dai, M. Huang, Z. Yang, C. Zhang, H. Chen, Acta Mater. 147 (2018) 59–69.

    Article  Google Scholar 

  32. N. Fonstein, Advanced high strength sheet steels, Springer, Switzerland, 2015.

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (No. 2017YFB0304801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-min Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Yh., Yao, S., Liu, W. et al. Influence of annealing temperatures on microstructure evolution and mechanical properties in a low-carbon steel. J. Iron Steel Res. Int. 27, 981–991 (2020). https://doi.org/10.1007/s42243-020-00392-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00392-2

Keywords

Navigation