Skip to main content
Log in

Controllability results for fractional semilinear delay control systems

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this article, we have presented the controllability relationship between the semilinear control system of fractional order (1, 2] with delay and that of the semilinear control system without delay. Suppose X and U be Hilbert spaces which are separable and \(Z=L_2[0,b;X],\;Z_h=L_2[-h,b;X],\;0\le h\le b\) and \(Y=L_2[0,b;U]\) be the function spaces. Let the semilinear control system of fractional order with delay as

$$\begin{aligned} ^CD_\tau ^\alpha z(\tau )= & {} Az(\tau )+Bv(\tau )+g(\tau ,z(\tau -h)),\;0\le \tau \le b;\\ z_0(\theta )= & {} \phi (\theta ),\;\;\;\; \theta \in [-h,0]\\ z'(0)= & {} z_0. \end{aligned}$$

where \(1<\alpha \le 2\), fractional Caputo derivative is denoted as \(^CD_{\tau }^\alpha \), time constant b is positive and finite.\(A:D(A)\subseteq X\rightarrow X\) is a operator which is linear and closed having densed domain X and A is the infinitesimal generator of solution operator \(\{C_\alpha (\tau )\}_{\tau \ge 0}\). The control function is denoted by \(v(\tau )\) and defined as \(v:[0,b]\rightarrow U\). The continuous state variable \(z(\tau )\in Z\), \(\phi \in L_2[-h,0;X]\). The operator \(B:Y\rightarrow Z\) is linear and bounded. The function \(g:[0,b]\times X\rightarrow V\) is purely nonlinear and satisfies Lipschitz continuity. We assumed that the fractional semilinear system without delay is approximate/exact controllable and by imposing some conditions on the range of the nonlinear term, we obtained the controllability results of the fractional semilinear system with delay. Approximate controllability of proposed problem is discussed under three different sets of assumptions. Exact controllability of proposed problem is also discussed. Finally an example is given to understand the theoretical results in better manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalman, R.E.: Controllability of linear systems. Contrib. Differ. Equ. 1, 190–213 (1963)

    MathSciNet  Google Scholar 

  2. Curtain, R.F., Zwart, H.J.: An Introduction to Infinite Dimensional Linear Systems Theory. Springer, New York (1995)

    Book  Google Scholar 

  3. Barnett, Stephen: Introduction to Mathematical Control Theory. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  4. Zhou, H.X.: Approximate controllability for a class of semilinear abstract equations. SIAM J. Control Optim. 21(4), 551–565 (1983). (84h:93015)

    Article  MathSciNet  Google Scholar 

  5. Wang, J., Zhou, Y.: Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. Real World Appl. 12(6), 3642–3653 (2011)

    Article  MathSciNet  Google Scholar 

  6. Jeet, K., Sukavanam, N.: Approximate controllability of nonlocal and impulsive neutral integro-differential equations using the resolvent operator theory and an approximating technique. Appl. Math. Comput. 364, 124690 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Naito, K.: Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim. 25, 715–722 (1987)

    Article  MathSciNet  Google Scholar 

  8. Naito, K., Park, J.Y.: Approximate Controllability for Trajectories of a Delay Volterra Control system. J. Optim. Theory Appl. 61(2), 271–279 (1989)

    Article  MathSciNet  Google Scholar 

  9. Sukavanam, N.: Approximate controllability of semilinear control systems with growing nonlinearity. In: Mathematical Theory of Control Proceedings of International Conference, pp. 353–357. Marcel Dekker, New York (1993)

  10. Sukavanam, N., Tafesse, S.: Approximate controllability of a delayed semilinear control system with growing nonlinear term. Nonlinear Anal. 74(18), 6868–6875 (2011). (2012h:93027)

    Article  MathSciNet  Google Scholar 

  11. Xu, K., Chen, L., Wang, M., Lopes, A.M., Tenreiro-Machado, J.A., Zhai, H.: Improved decentralized fractional PD control of structure vibrations. Mathematics 2020(8), 326 (2020)

    Article  Google Scholar 

  12. Chen, L., et al.: Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties. Appl. Math. Comput. 257, 274–284 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Chen, L., et al.: Delay-dependent criterion for asymptotic stability of a class of fractional-order memristive neural networks with time-varying delays. Neural Netw. 118, 289–299 (2019)

    Article  Google Scholar 

  14. Chen, L., et al.: Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 125, 174–184 (2020)

    Article  Google Scholar 

  15. Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. 32(1–2), 75–96 (1978). (58 #17404)

    Article  MathSciNet  Google Scholar 

  16. Balachandran, K., Anthoni, S.M.: Controllability of second-order semilinear neutral functional differential systems in Banach spaces. Comput. Math. Appl. 41(10–11), 1223–1235 (2001). (2002b:93012)

    Article  MathSciNet  Google Scholar 

  17. Henríquez, H.R., Hernández, E.: Approximate controllability of second-order distributed implicit functional systems. Nonlinear Anal. 70(2), 1023–1039 (2009). (2010b:93014)

    Article  MathSciNet  Google Scholar 

  18. Park, J.Y., Han, H.K.: Controllability for some second order differential equations. Bull. Korean Math. Soc. 34(3), 411–419 (1997). (99d:93006)

    MathSciNet  MATH  Google Scholar 

  19. Balachandran, K., Park, J.Y., Anthoni, S.Marshal: Controllability of second order semilinear Volterra integrodifferential systems in Banach spaces. Bull. Korean Math. Soc. 36(1), 1–13 (1999). (99m:93004)

    MathSciNet  MATH  Google Scholar 

  20. Kumar, S., Sukavanam, N.: Controllability of second-order systems with nonlocal conditions in Banach spaces. Numer. Funct. Anal. Optim. 35(4), 423–431 (2014)

    Article  MathSciNet  Google Scholar 

  21. Vijayakumar, V., Udhayakumar, R., Dineshkumar, C.: Approximate controllability of second order nonlocal neutral differential evolution inclusions. IMA J. Math. Control Inf. 1, 1 (2020). https://doi.org/10.1093/imamci/dnaa001

    Article  Google Scholar 

  22. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3), 1063–1077 (2010). (2011b:34239)

    Article  MathSciNet  Google Scholar 

  23. Sakthivel, R., Ren, Y., Mahmudov, N.I.: On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl. 62(3), 1451–1459 (2011). (2012d:93029)

    Article  MathSciNet  Google Scholar 

  24. Sakthivel, R., Mahmudov, N.I., Nieto, Juan J.: Controllability for a class of fractional-order neutral evolution control systems. Appl. Math. Comput 218(20), 10334–10340 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Kumar, S., Sukavanam, N.: Approximate controllability of fractional order semilinear systems with bounded delay. J. Differ. Equ. 252(11), 6163–6174 (2012)

    Article  MathSciNet  Google Scholar 

  26. Kumar, S., Sukavanam, N.: On the approximate controllability of fractional order control systems with delay. Nonlinear Dyn. Syst. Theory 13(1), 69–78 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Mokkedem, F.Z.: Approximate controllability for weighted semilinear Riemann–Liouville fractional differential systems with infinite delay. Differ. Equ. Dyn. Syst. (2020). https://doi.org/10.1007/s12591-020-00521-z

    Article  Google Scholar 

  28. Ding, Y., Li, Y.: Finite-approximate controllability of fractional stochastic evolution equations with nonlocal conditions. J. Inequal. Appl. 2020, 95 (2020)

    Article  MathSciNet  Google Scholar 

  29. You, Z., Fečkan, M., Wang, J.: Relative controllability of fractional delay differential equations via delayed perturbation of Mittag–Leffler functions. J. Comput. Appl. Math. 378, 112939 (2020)

    Article  MathSciNet  Google Scholar 

  30. Shukla, Anurag, Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order \(\alpha \in (1,2]\) with infinite delay. Mediterr. J. Math. 13(5), 2539–2550 (2016)

    Article  MathSciNet  Google Scholar 

  31. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear stochastic system of order \(\alpha \in (1,2]\). J. Dyn. Control Syst. 23(4), 679–691 (2017)

    Article  MathSciNet  Google Scholar 

  32. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order \(\alpha \in (1,2]\). SIAM Proc. (2015). https://doi.org/10.1137/1.9781611974072.25

    Article  MATH  Google Scholar 

  33. Shu, L., Shu, X.-B., Mao, J.: Approximate controllability and existence of mild solutions for Riemann–Liouville fractional stochastic evolution equations with nonlocal conditions of order \(1<\alpha <2\). Fract. Calc. Appl. Anal. 22(4), 1086–1112 (2019)

    Article  MathSciNet  Google Scholar 

  34. Shukla, Anurag, Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear control system of order \(\alpha \in (1,2]\) in Hilbert spaces. Nonlinear Stud. 22(1), 131–138 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Li, K., Peng, J., Gao, J.: Controllability of nonlocal fractional differential systems of order \(\alpha \in (1,2]\) in Banach spaces. Rep. Math. Phys. 71(1), 33–43 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, A., Patel, R. Controllability results for fractional semilinear delay control systems. J. Appl. Math. Comput. 65, 861–875 (2021). https://doi.org/10.1007/s12190-020-01418-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01418-4

Keywords

Mathematics Subject Classifications

Navigation