Skip to main content

Advertisement

Log in

Stable remnants and quantum gravity effects in nonlinear electric source Culetu black hole

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we discuss remnants and quantum gravity effects on thermodynamics of a new kind of regular black hole known as Culetu black hole. The black hole results in coupling of gravity to nonlinear electrodynamic source. We first derive various thermodynamic quantities of interest. We then discuss in detail the existence and stability of remnants. The stability of remnants is then analyzed in the presence of thermal fluctuations, and we observe that the thermal fluctuations tend to increase the entropy at the horizon radius which is exactly the remnant radius. We then investigate non-perturbative quantum gravity effects on the thermodynamics of Culetu black hole up to leading-order terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.W. Hawking, G.F. Ellis, The Large Scale Structure of Space–Time (Cambridge University Press, Cambridge, 1973)

    MATH  Google Scholar 

  2. R.M. Wald, Gravitational Collapse and Cosmic Censorship. arXiv: gr-qc/9710068 (1997)

  3. J. Bardeen, Proceedings of GR5 (U.S.S.R, Tiflis, 1968)

    Google Scholar 

  4. E. Ayon-Beato, A. Garcia, Phys. Rev. Lett. 80, 5056 (1998)

    ADS  Google Scholar 

  5. I.G. Dymnikova, Gen. Relat. Gravity 24, 235 (1992)

    ADS  MathSciNet  Google Scholar 

  6. I.G. Dymnikova, Int. J. Mod. Phys. D 05, 529 (1996)

    ADS  Google Scholar 

  7. I.G. Dymnikova, Int. J. Mod. Phys. D 12, 1015 (2003)

    ADS  MathSciNet  Google Scholar 

  8. K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001)

    ADS  MathSciNet  Google Scholar 

  9. S.A. Hayward, Phys. Rev. Lett. 96, 031103 (2006)

    ADS  Google Scholar 

  10. A. Smailagic, E. Spallucci, Phys. Lett. B 688, 82 (2010)

    ADS  MathSciNet  Google Scholar 

  11. L. Modesto, P. Nicolini, Phys. Rev. D 82, 104035 (2010)

    ADS  Google Scholar 

  12. H. Culetu, Int. J. Theor. Phys. 54, 2855–2863 (2015). https://doi.org/10.1007/s10773-015-2521-6

    Article  Google Scholar 

  13. S.W. Hawking, Phys. Rev. Lett. 26, 1344 (1971)

    ADS  Google Scholar 

  14. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    ADS  Google Scholar 

  15. J.M. Bardeen, Commun. Math. Phys. 31, 161 (1973)

    ADS  Google Scholar 

  16. S.W. Hawking, D.N. Page, Commun. Math. Phys. 87, 577 (1983)

    ADS  Google Scholar 

  17. J. Sadeghi, B. Pourhassan, F. Rahimi, Can. J. Phys. 92, 1638 (2014)

    ADS  Google Scholar 

  18. S. Hemming, L. Thorlacius, J. High Energy Phys. 0711, 086 (2007)

    ADS  Google Scholar 

  19. B. Pourhassan, M. Faizal, S. Upadhyay, L. Al Asfar, Eur. Phys. J. C 77, 555 (2017)

    ADS  Google Scholar 

  20. B. Pourhassan, M. Faizal, Nucl. Phys. B 913, 834 (2016)

    ADS  Google Scholar 

  21. S. Upadhyay, Gen. Relat. Gravity 50, 128 (2018)

    ADS  Google Scholar 

  22. M. Faizal, B. Pourhassan, Phys. Lett. B 751, 487 (2015)

    ADS  Google Scholar 

  23. B. Pourhassan, M. Faizal, Phys. Lett. B 755, 444 (2016)

    ADS  Google Scholar 

  24. S.S. More, Class. Quantum Gravity 22, 4129 (2005)

    ADS  Google Scholar 

  25. B. Pourhassan, K. Kokabi, Can. J. Phys. 96, 262 (2018)

    ADS  Google Scholar 

  26. A. Pourdarvish, J. Sadeghi, H. Farahani, B. Pourhassan, Int. J. Theor. Phys. 52, 3560 (2013)

    Google Scholar 

  27. J. Jing, M.L. Yan, Phys. Rev. D 63, 024003 (2001)

    ADS  MathSciNet  Google Scholar 

  28. K. Nozari, S.H. Mehdipour, Int. J. Mod. Phys. A 21, 4979 (2006)

    ADS  Google Scholar 

  29. S. Upadhyay, Phys. Lett. B 775, 130 (2017)

    ADS  Google Scholar 

  30. B. Pourhassan, M. Faizal, U. Debnath, Eur. Phys. J. C 76, 145 (2016)

    ADS  Google Scholar 

  31. S. Upadhyay, S.H. Hendi, S. Panahiyan, B.E. Panah, Prog. Theor. Exp. Phys. 093E01 (2018)

  32. B. Pourhassan, M. Faizal, S. Capozziello, Ann. Phys. 377, 108 (2017)

    ADS  Google Scholar 

  33. B. Pourhassan, M. Faizal, S.A. Ketabi, Int. J. Mod. Phys. D 27, 1850118 (2018)

    ADS  Google Scholar 

  34. J. Sadeghi, B. Pourhassan, M. Rostami, Phys. Rev. D 94, 064006 (2016)

    ADS  MathSciNet  Google Scholar 

  35. S. Upadhyay, B. Pourhassan, Prog. Theor. Exp. Phys. 2019, 013B03 (2019)

    Google Scholar 

  36. B. Pourhassan, K. Kokabi, S. Rangyan, Gen. Relat. Gravity 49, 144 (2017)

    ADS  Google Scholar 

  37. S.H. Hendi, S. Panahiyan, S. Upadhyay, B.E. Panah, Phys. Rev. D 95, 084036 (2017)

    ADS  Google Scholar 

  38. B. Pourhassan, M. Faizal, Z. Zaz, A. Bhat, Phys. Lett. B 773, 325 (2017)

    ADS  Google Scholar 

  39. B. Pourhassan, K. Kokabi, Int. J. Theor. Phys. 57, 780 (2018)

    Google Scholar 

  40. M. Faizal, M.M. Khalil, Int. J. Mod. Phys. A 30, 1550144 (2015)

    ADS  Google Scholar 

  41. S.W. Zhou, W.-B. Liu, Int. J. Theor. Phys. 50, 1776 (2011)

    Google Scholar 

  42. H. Quevedo, A. Sanchez, S. Taj, A. Vazquez, J. Phys. A 45, 055211 (2012)

    ADS  MathSciNet  Google Scholar 

  43. B. Pourhassan, S. Upadhyay, H. Saadat, H. Farahani, Nucl. Phys. B 928, 415 (2018)

    Google Scholar 

  44. K. Nozari, A.S. Sefiedgar, Phys. Lett. B 635, 156–160 (2006)

    ADS  MathSciNet  Google Scholar 

  45. I. Balart, E. Vagenas, Phys. Lett. B 730, 14 (2014)

    ADS  MathSciNet  Google Scholar 

  46. I. Balart, E. Vagenas, Phys. Rev. D 90, 124045 (2014)

    ADS  Google Scholar 

  47. L. Xiang, Y. Ling, Y.G. Shen, Int. J. Mod. Phys. D 22, 1342016 (2013)

    ADS  Google Scholar 

  48. A. Simpson et al., Universe 6, 8 (2020). https://doi.org/10.3390/universe6010008

    Article  ADS  Google Scholar 

  49. B. Pourhassan, Eur. Phys. J. C 79, 740 (2019)

    ADS  Google Scholar 

  50. B.E. Panah et al., Phys. Dark Univ. 27, 100452 (2020)

    Google Scholar 

  51. S.B. Giddings, Phys. Rev. D 46, 1347 (1992)

    ADS  Google Scholar 

  52. S.B. Giddings, Phys. Rev. D 49, 4078 (1994)

    ADS  MathSciNet  Google Scholar 

  53. P. Chen, Y.C. Ong, D. Yeom, Phys. Rep. 603, 1 (2015)

    ADS  MathSciNet  Google Scholar 

  54. P. Chen, R.J. Adler, N. Phys, Proc. Suppl. 124, 103 (2003)

    Google Scholar 

  55. J.H. MacGibbon, Nature 329, 308 (1987)

    ADS  Google Scholar 

  56. V. Frolov, I. Novikov, Phys. Rev. D 48, 4545 (1993)

    ADS  MathSciNet  Google Scholar 

  57. C.G. Callan, F. Wilczek, Phys. Lett. B 33, 55 (1994)

    ADS  Google Scholar 

  58. J.M. Magán, D. Melnikov, M.R.O. Silva, JHEP 1411, 069 (2014). arXiv:1408.2580 [hep-th]

    ADS  Google Scholar 

  59. H. Casini, M. Huerta, R.C. Myers, JHEP 1105, 036 (2011). arXiv:1102.0440 [hep-th]

    ADS  Google Scholar 

  60. S.N. Solodukhin, Living Rev. Rel. 14, 8 (2011). arXiv:1104.3712 [hep-th]

    Google Scholar 

  61. R.K. Kaul, P. Majumdar, Phys. Rev. Lett. 84, 5255 (2000)

    ADS  MathSciNet  Google Scholar 

  62. S. Carlip, Class. Quant. Grav. 17, 4175 (2000)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yawar H. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Y.H., Ganai, P.A. & Uphadhay, S. Stable remnants and quantum gravity effects in nonlinear electric source Culetu black hole. Eur. Phys. J. Plus 135, 620 (2020). https://doi.org/10.1140/epjp/s13360-020-00630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00630-2

Navigation