Skip to main content

Advertisement

Log in

Low-energy scattering of deuteron by \(^3\text {He}\) and \(^3\text {H}\) in halo effective field theory

  • Regular Article – Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We study the low-energy d-\(^3\text {He}\) and d-\(^3\text {H}\) elastic scattering using the halo effective field theory (EFT) formalism. For this purpose, we initially focus on the phase shift analysis of S- and P-wave scattering using the effective range expansion (ERE). Using the ERE analysis we determine the unknown EFT low-energy coupling constants and present the leading- and next-to-leading-order EFT results for the phase shift in each channel. Also, the differential cross section versus center-of-mass energy and angle are plotted with comparison to the available experimental data. Our results show good consistency with the present data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: We select the “There is no data or the data will not be deposited” option in the submision process because, this paper is concentrated on a theoretical study of a reaction (not experimental one). In this study, we use the available experimental data to determine some unknown theroretical parameters for completeing our theoretical approach. The reliablty of our approach has been proven by comparing our other evaluated results with the corresponding experimental data. Our obtained values for unknown parameters could be used in the same future works.]

References

  1. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    ADS  Google Scholar 

  2. P.F. Bedaque, U. van Kolck, Ann. Rev. Nucl. Part. Sci. 52, 339 (2002)

    ADS  Google Scholar 

  3. E. Braaten, H.-W. Hammer, Phys. Rept. 428, 259 (2006)

    ADS  Google Scholar 

  4. D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534, 329 (1998)

    ADS  Google Scholar 

  5. D.R. Phillips, G. Rupak, M.J. Savage, Phys. Lett. B 473, 209 (2000)

    ADS  Google Scholar 

  6. J.-W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653, 386 (1999)

    ADS  Google Scholar 

  7. H.-W. Hammer, C. Ji, D.R. Phillips, J. Phys. G 44, 103002 (2017)

    ADS  Google Scholar 

  8. S.-I. Ando, Few-Body Syst. 55, 191 (2014)

    ADS  Google Scholar 

  9. S.-I. Ando, G.-S. Yang, Y. Oh, Phys. Rev. C 89, 014318 (2014)

    ADS  Google Scholar 

  10. C.A. Bertulani, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 712, 37 (2002)

    ADS  Google Scholar 

  11. P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Lett. B 569, 159 (2003)

    ADS  Google Scholar 

  12. C. Ji, Ch. Elster, D.R. Phillips, Phys. Rev. C 90, 044004 (2014)

    ADS  Google Scholar 

  13. M. Moeini Arani, M. Radin, S. Bayegan, Prog. Theor. Exp. Phys. 093D, 07 (2017)

    Google Scholar 

  14. X. Kong, F. Ravndal, Phys. Lett. B 450, 320 (1999)

    ADS  Google Scholar 

  15. X. Kong, F. Ravndal, Nucl. Phys. A 665, 137 (2000)

    ADS  Google Scholar 

  16. T. Barford, M.C. Birse, Phys. Rev. C 67, 064006 (2003)

    ADS  Google Scholar 

  17. S. Ando, J.W. Shin, C.H. Hyun, S.W. Hong, Phys. Rev. C 76, 064001 (2007)

    ADS  Google Scholar 

  18. S. Ando, M.C. Birse, Phys. Rev. C 78, 024004 (2008)

    ADS  Google Scholar 

  19. V. Lensky, M.C. Birse, Eur. Phys. J. A 47, 142 (2011)

    ADS  Google Scholar 

  20. S.-I. Ando, Eur. Phys. J. A 52, 130 (2016)

    ADS  Google Scholar 

  21. R. Higa, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 809, 171 (2008)

    ADS  Google Scholar 

  22. R. Higa, G. Rupak, A. Vaghani, Eur. Phys. J. A 54, 89 (2018)

    ADS  Google Scholar 

  23. F. Ajzenberg-Selove, Nucl. Phys. A 413, 1 (1984)

    ADS  Google Scholar 

  24. A. Krauss, H.W. Becker, H.P. Trautvetter, C. Rolfs, K. Brand, Nucl. Phys. A 465, 150 (1987)

    ADS  Google Scholar 

  25. M. Trginova, P. Bem, V. Presperin, Izv. Akad. Nauk SSSR Ser. Fiz. 54, 982 (1990)

    Google Scholar 

  26. M. Trginova, P. Bem, V. Presperin, Bull. Acad. Sci. USSR Phys. Ser. 52, 165 (1990)

    Google Scholar 

  27. F.C. Barker, Phys. Rev. C 56, 2646 (1997)

    ADS  Google Scholar 

  28. V.G. Neudatchin, V.I. Kukulin, V.N. Pomerantsev, A.A. Sakharuk, Phys. Lett. B 255, 482 (1991)

    ADS  Google Scholar 

  29. S.B. Dubovichenko et al., Nucl. Phys. A 987, 46 (2019)

    ADS  Google Scholar 

  30. P. Bem, V. Presperin, M. Trginova, B.P. Adyasevich, V.G. Antonenko, Muon Catal. Fus. 3, 389 (1988)

    Google Scholar 

  31. L.N. Bogdanova, G.M. Hale, V.E. Markushin, Phys. Rev. C 44, 1289 (1991)

    ADS  Google Scholar 

  32. A. Csoto, R.G. Lovas, A.T. Kruppa, Phys. Rev. Lett. 70, 1389 (1993)

    ADS  Google Scholar 

  33. B.M. Karnakov, V.D. Mur, S.G. Pozdnyakov, V.S. Popov, Pisma. Zh. Eksp. Teor. Fiz. 54, 131 (1991)

    Google Scholar 

  34. B.M. Karnakov, V.D. Mur, S.G. Pozdnyakov, V.S. Popov, JETP Lett. (USSR) 54, 127 (1991)

    ADS  Google Scholar 

  35. V.S. Popov, B.M. Karnakov, V.D. Mur, Hyper. Interact. 102, 401 (1996)

    ADS  Google Scholar 

  36. B. Jenny et al., Nucl. Phys. A 337, 77 (1980)

    ADS  Google Scholar 

  37. P. Heiss, H.H. Hachenbroich, Nucl. Phys. A 162, 530 (1971)

    ADS  Google Scholar 

  38. J. Gasser, V.E. Lyubovitskij, A. Rusetsky, Phys. Rept. 456, 167 (2008)

    ADS  Google Scholar 

  39. M.L. Goldberger, K.M. Watson, Collision Theory (Wiley, New York, 1967)

    MATH  Google Scholar 

  40. L.D. Landau, E.M. Lifschitz, Quantum Mechanics (Pergamon Press, London, 1958)

    Google Scholar 

  41. S. Konig et al., Phys. Rev. Lett. 118, 202501 (2017)

    ADS  Google Scholar 

  42. H.W. Greißhammer, M.R. Schindler, R.P. Springer, Eur. Phys. J. A 48, 7 (2012)

    ADS  Google Scholar 

  43. S.B. Dubovichenko, N.A. Burkova, A.V. Dzhazairov-Kakhramanov, A.S. Tkachenko, Russ. Phys. J. 60, 935 (2017)

    Google Scholar 

  44. ENDF/B online database at the NNDC Online Data Service. http://www.nndc.bnl.gov

Download references

Acknowledgements

The authors acknowledge the Iran National Science Foundation (INSF) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Moeini Arani.

Additional information

Communicated by Vittorio Somà

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arani, M.M. Low-energy scattering of deuteron by \(^3\text {He}\) and \(^3\text {H}\) in halo effective field theory. Eur. Phys. J. A 56, 198 (2020). https://doi.org/10.1140/epja/s10050-020-00204-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00204-x

Navigation