Skip to main content
Log in

Visible frequency broadband dielectric metahologram by random Fourier phase-only encoding

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

In recent years, metasurfaces that enable the flexible wavefront modulation at sub-wavelength scale have been widely used into holographic display, due to its prominent advantages in polarization degrees of freedom, viewing angle, and achromaticity in comparison with traditional holographic devices. In holography, the computational complexity of hologram, imaging sharpness, energy utilization, reproduction rate, and system indirection are all determined by the encoding method. Here, we propose a visible frequency broadband dielectric metahologram based on the random Fourier phase-only encoding method. Using this simple and convenient method, we design and fabricate a transmission-type geometric phase all-dielectric metahologram, which can realize holographic display with high quality in the visible frequency range. This method encodes the amplitude information into the phase function only once, eliminating the cumbersome iterations, which greatly simplifies the calculation process, and may facilitate the preparation of large area nanoprint-holograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. W. Cooley, and J. W. Tukey, Math. Comp. 19, 297 (1965).

    MathSciNet  Google Scholar 

  2. T. Shimobaba, H. Nakayama, N. Masuda, and T. Ito, Opt. Express 18, 19504 (2010).

    ADS  Google Scholar 

  3. G. A. Rakuljic, V. Leyva, and A. Yariv, in Optical data storage by using orthogonal wavelength-multiplexed volume holograms: Landmark Papers On Photorefractive Nonlinear Optics (World Scientific, Singapore, 1995), p. 519.

    Google Scholar 

  4. A. Chong, C. Wan, J. Chen, and Q. Zhan, Nat. Photon. 14, 350 (2020).

    ADS  Google Scholar 

  5. L. Chen, and D. Zhao, Opt. Express 14, 8552 (2006).

    ADS  Google Scholar 

  6. E. Cuche, P. Marquet, and C. Depeursinge, Appl. Opt. 38, 6994 (1999).

    ADS  Google Scholar 

  7. Z. Chen, T. Zeng, and J. Ding, Opt. Lett. 41, 1929 (2016).

    ADS  Google Scholar 

  8. R. W. Gerchberg, Optik 35, 237 (1972).

    Google Scholar 

  9. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, Appl. Opt. 38, 5004 (1999).

    ADS  Google Scholar 

  10. O. Mendoza-Yero, G. Mínguez-Vega, and J. Lancis, Opt. Lett. 39, 1740 (2014).

    ADS  Google Scholar 

  11. T. W. Clark, R. F. Offer, S. Franke-Arnold, A. S. Arnold, and N. Radwell, Opt. Express 24, 6249 (2016).

    ADS  Google Scholar 

  12. T. Haist, and W. Osten, J. Micro/Nanolith. MEMS MOEMS 14, 041310 (2015).

    ADS  Google Scholar 

  13. J. Y. Son, B. Javidi, and B. Kae-Dal Kwack, Proc. IEEE 94, 502 (2006).

    Google Scholar 

  14. Z. Zeng, H. Zheng, X. Lu, H. Gao, and Y. Yu, Opt. Rev. 22, 853 (2015).

    Google Scholar 

  15. P. Li, X. Fan, D. Wu, S. Liu, Y. Li, and J. Zhao, Photon. Res. 8, 475 (2020).

    Google Scholar 

  16. H. Yu, K. R. Lee, J. Park, and Y. K. Park, Nat. Photon. 11, 186 (2017).

    ADS  Google Scholar 

  17. M. Ozaki, J. Kato, and S. Kawata, Science 332, 218 (2011).

    ADS  Google Scholar 

  18. E. Almeida, O. Bitton, and Y. Prior, Nat. Commun. 7, 12533 (2016).

    ADS  Google Scholar 

  19. F. H. L. Koppens, T. Mueller, P. Avouris, A. C. Ferrari, M. S. Vitiello, and M. Polini, Nat. Nanotech. 9, 780 (2014).

    ADS  Google Scholar 

  20. Q. Jiang, G. Jin, and L. Cao, Adv. Opt. Photon. 11, 518 (2019).

    Google Scholar 

  21. Z. Zhou, J. Li, R. Su, B. Yao, H. Fang, K. Li, L. Zhou, J. Liu, D. Stellinga, C. P. Reardon, T. F. Krauss, and X. Wang, ACS Photon. 4, 544 (2017).

    Google Scholar 

  22. J. Li, S. Chen, H. Yang, J. Li, P. Yu, H. Cheng, C. Gu, H. T. Chen, and J. Tian, Adv. Funct. Mater. 25, 704 (2015).

    Google Scholar 

  23. D. Wen, J. J. Cadusch, J. Meng, and K. B. Crozier, Adv. Funct. Mater. 30, 1906415 (2019).

    Google Scholar 

  24. W. Liu, Z. Li, Z. Li, H. Cheng, C. Tang, J. Li, S. Chen, and J. Tian, Adv. Mater. 31, 1901729 (2019).

    Google Scholar 

  25. X. Zang, F. Dong, F. Yue, C. Zhang, L. Xu, Z. Song, M. Chen, P. Y. Chen, G. S. Buller, Y. Zhu, S. Zhuang, W. Chu, S. Zhang, and X. Chen, Adv. Mater. 30, 1707499 (2018).

    Google Scholar 

  26. Y. Bao, Y. Yu, H. Xu, C. Guo, J. Li, S. Sun, Z. K. Zhou, C. W. Qiu, and X. H. Wang, Light Sci. Appl. 8, 95 (2019).

    ADS  Google Scholar 

  27. S. Liu, T. J. Cui, Q. Xu, D. Bao, L. Du, X. Wan, W. X. Tang, C. Ouyang, X. Y. Zhou, H. Yuan, H. F. Ma, W. X. Jiang, J. Han, W. Zhang, and Q. Cheng, Light Sci. Appl. 5, e16076 (2016).

    Google Scholar 

  28. Z. L. Deng, J. Deng, X. Zhuang, S. Wang, K. Li, Y. Wang, Y. Chi, X. Ye, J. Xu, G. P. Wang, R. Zhao, X. Wang, Y. Cao, X. Cheng, G. Li, and X. Li, Nano Lett. 18, 2885 (2018).

    ADS  Google Scholar 

  29. L. Jin, Z. Dong, S. Mei, Y. F. Yu, Z. Wei, Z. Pan, S. D. Rezaei, X. Li, A. I. Kuznetsov, Y. S. Kivshar, J. K. W. Yang, and C. W. Qiu, Nano Lett. 18, 8016 (2018).

    ADS  Google Scholar 

  30. B. Yang, W. Liu, Z. Li, H. Cheng, D. Y. Choi, S. Chen, and J. Tian, Nano Lett. 19, 4221 (2019).

    ADS  Google Scholar 

  31. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K. W. Cheah, C. W. Qiu, J. Li, T. Zentgraf, and S. Zhang, Nat. Commun. 4, 2808 (2013).

    ADS  Google Scholar 

  32. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, Nat. Commun. 6, 8241 (2015).

    ADS  Google Scholar 

  33. T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, Nat. Commun. 1, 59 (2010).

    ADS  Google Scholar 

  34. T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, and L. Zhou, Phys. Rev. Appl. 8, 034033 (2017).

    ADS  Google Scholar 

  35. X. Guo, P. Li, J. Zhong, S. Liu, B. Wei, W. Zhu, S. Qi, H. Cheng, and J. Zhao, Laser Photon. Rev. 14, 1900366 (2020).

    ADS  Google Scholar 

  36. A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, Nat. Commun. 6, 7069 (2015).

    ADS  Google Scholar 

  37. H. Liang, Q. Lin, X. Xie, Q. Sun, Y. Wang, L. Zhou, L. Liu, X. Yu, J. Zhou, T. F. Krauss, and J. Li, Nano Lett. 18, 4460 (2018).

    ADS  Google Scholar 

  38. P. C. Wu, W. Zhu, Z. X. Shen, P. H. J. Chong, W. Ser, D. P. Tsai, and A. Q. Liu, Adv. Opt. Mater. 5, 1600938 (2017).

    Google Scholar 

  39. X. Gao, X. Han, W. P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, IEEE Trans. Antennas Propagat. 63, 3522 (2015).

    ADS  Google Scholar 

  40. D. Veksler, E. Maguid, N. Shitrit, D. Ozeri, V. Kleiner, and E. Hasman, ACS Photon. 2, 661 (2015).

    Google Scholar 

  41. L. Huang, X. Chen, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, Light Sci. Appl. 2, e70 (2013).

    ADS  Google Scholar 

  42. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X. C. Yuan, and F. Capasso, Science 340, 331 (2013).

    ADS  Google Scholar 

  43. R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, Science 358, 896 (2017).

    ADS  MathSciNet  Google Scholar 

  44. E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, and R. W. Boyd, Light Sci. Appl. 3, e167 (2014).

    ADS  Google Scholar 

  45. P. Li, X. Fan, D. Wu, X. Guo, Y. Li, S. Liu, and J. Zhao, Opt. Express 27, 30009 (2019).

    ADS  Google Scholar 

  46. D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing (McGraw-Hill, Boston, 2000).

    Google Scholar 

  47. S. Chen, Z. Li, W. Liu, H. Cheng, and J. Tian, Adv. Mater. 31, 1802458 (2019).

    Google Scholar 

  48. S. Chen, W. Liu, Z. Li, H. Cheng, and J. Tian, Adv. Mater. 32, 1805912 (2020).

    Google Scholar 

  49. W. Zhao, H. Jiang, B. Liu, J. Song, Y. Jiang, C. Tang, and J. Li, Sci. Rep. 6, 30613 (2016).

    ADS  Google Scholar 

  50. J. L. M. Fuentes, and I. Moreno, Opt. Express 26, 5875 (2018).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Li or JianLin Zhao.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11634010, 91850118, 11774289, 61675168, and 11804277), the National Key Research and Development Program of China (Grant No. 2017YFA0303800), the Fundamental Research Funds for the Central Universities (Grant Nos. 3102018zy036, 3102019JC008, and 310201911cx022). We thank ZhiWei Song of National Center for Nanoscience and Technology for supplying the materials as well as the Analytical and Testing Center of Northwestern Polytechnical University.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Li, P., Li, B. et al. Visible frequency broadband dielectric metahologram by random Fourier phase-only encoding. Sci. China Phys. Mech. Astron. 64, 214211 (2021). https://doi.org/10.1007/s11433-020-1574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1574-1

Keywords

Navigation