Skip to main content
Log in

Microstructures and properties of 6016 aluminum alloy with gradient composition

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Weight reduction plays an important role in reducing fuel and emissions, and the heat-treatable 6016 aluminum alloy exhibits excellent application prospect in automobile lightweight. In this paper, ingot with constant Mg/Si ratio and decreased Mg and Si contents was obtained. Both the microstructure and the texture of 6016 aluminum alloy plate designed with different alloy compositions at the top/bottom were systematically investigated by electron backscatter diffraction technology (EBSD) measurement, as well as the room-temperature mechanical properties at the different positions with composition gradient. The results indicate that as Mg and Si contents increase, the grain size decreases, improving the cube texture with recrystallization and weakening the S texture. The strength of 6016 aluminum alloy decreases with lower Mg and Si contents.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guo RC, Wu N, Zhang GR. New materials for auto-body lightweight applications. Adv Mater Res. 2012;341–342(1662–8985):226.

    Google Scholar 

  2. Cole GS, Sherman AM. Light weight materials for automotive application. Mater Charact. 1995;35(1):3.

    Article  CAS  Google Scholar 

  3. Chen T, Liu Z, Liu XM, Chen ZP. Solidified microstructure of semisolid A356-Ce alloy with two-way intermittent electromagnetic stirr. Chin J Rare Met. 2018;42(1):29.

    Google Scholar 

  4. Xu XJ, Yang F, Zhao JJ, Zhu JX, Ding Q, Wang CS. Microstructure and mechanical properties of ultrahigh strength aluminum alloy extrusion materials with different heating. Rates Solid Solut Time. 2018;42(3):238.

    Google Scholar 

  5. Zhang WM, Ji H, Ma TD, Liu YQ, Fan JZ, Fan ZG. Corrosion behaviors of 15% SiCp/2009Al composite in 3.5% NaCl solution. Chin J Rare Met. 2018;42(5):516.

    Google Scholar 

  6. Wang J, Luo BH, Bai ZH, Gao Y, Zheng YY, Ren ZW. Microstructures and properties of Al-Mg-Si casting alloy with different Mg/Si ratios. Chin J Rare Met. 2018;42(7):681.

    Google Scholar 

  7. Guo YC, Dong XB, Li JP, Xia F, Yang W, Bai YP. Solidification and microstructure of Al-Si piston alloy by melt ultrasonic treatment. Chin J Rare Met. 2018;42(7):731.

    Google Scholar 

  8. Guo C, Li BM, Zhang HT, Cui JZ. Research Status And Development Trend Of High-Strength And Corrosion-Resistant 5xxx series aluminum alloy. Chin J Rare Met. 2018;42(8):878.

    Google Scholar 

  9. Birol Y. Pre-aging to improve bake hardening in a twin-roll cast Al–Mg–Si alloy. Mater Sci Eng A. 2005;391(1–2):175.

    Article  Google Scholar 

  10. Lee DH, Park JH, Nam SW. Enhancement of mechanical properties of Al–Mg–Si alloys by means of manganese dispersoids. Mater Technol. 1999;15(4):450.

    Article  CAS  Google Scholar 

  11. Ewdards GA, Stiller K, DunloP GL. The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 1998;46(11):3893.

    Article  Google Scholar 

  12. Li Y, Chen L, Tang J. Effects of asymmetric feeder on microstructure and mechanical properties of high strength Al-Zn-Mg alloy by hot extrusion. J Alloys Compd. 2018;749(15):293.

    Article  CAS  Google Scholar 

  13. Liu T, Mao WM, Feng HP. Measurement of integral texture of hot rolled aluminium sheet by X-ray transmission method. Phys Exam Test. 2005;23(4):11.

    Google Scholar 

  14. Vatne HE, Shahani R, Nes E. Deformation of cube-oriented grains and formation of recrystallized cube grains in a hot deformed commercial AlMgMn aluminium alloy. Acta Mater. 1996;44(11):4447.

    Article  CAS  Google Scholar 

  15. Engler O, Jürgen H. Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—a review. Mater Sci Eng A. 2002;336(1–2):249.

    Article  Google Scholar 

  16. Zhang JX, Zhang L, Liu YT. Microstructure and texture evolution of 6016 aluminum alloy during hot compressing deformation. Rare Met Mater Eng. 2014;23(4):404.

    Article  Google Scholar 

  17. Pogatscher S, Antrekowitsch H, Uggowitzer PJ. Interdependent effect of chemical composition and thermal history on artificial aging of AA6061. Acta Mater. 2012;60(15):5545.

    Article  CAS  Google Scholar 

  18. Miao WF, Laughlin DE. Effects of Cu content and preaging on precipitation characteristics in aluminum alloy 6022. Metall Mater Trans. 2000;31(2):361.

    Article  Google Scholar 

  19. Svenningsen G, Larsen MH, Nordlien JH. Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy. Corros Sci. 2006;48(1):258.

    Article  CAS  Google Scholar 

  20. Ni PX, Zuo XR, Li ZM. Effect of trace elements on microstructure and properties of as-cast 7005 aluminum alloy. Trans Mater Heat Treat. 2008;29(03):94.

    CAS  Google Scholar 

  21. Yuan W, Liang Z. Effect of Zr addition on properties of Al–Mg–Si aluminum alloy used for all aluminum alloy conductor. Mater Des. 2011;32(8–9):4195.

    Article  CAS  Google Scholar 

  22. Zhong H, Rometsch P, Estrin Y. Effect of alloy composition and heat treatment on mechanical performance of 6xxx aluminum alloys. Trans Nonferr Met Soc. 2014;24(7):2174.

    Article  CAS  Google Scholar 

  23. Zhang YH, Sun MY, Tang GP, Chen JM, Huang SK. Microstructure and martensitic transformation of cast NiTiNb shape memory alloy with different cooling gradient. Chin J Rare Met. 2018;42(11):1121.

    Google Scholar 

  24. Wu XP, Zhang BT, Peng C. Preparation of CeF3 optical coating material by temperature gradient method. Chin J Rare Met. 2018;42(12):1287.

    Google Scholar 

  25. Sengupta J, Shin HJ, Thomas BG, Kim SH. Micrograph evidence of meniscus solidification and sub-surface microstructure evolution in continuous-cast ultra-low carbon steels. Acta Mater. 2006;54(4):1165.

    Article  CAS  Google Scholar 

  26. Založnik Miha, Šarler Božidar. Modeling of macrosegregation in direct-chill casting of aluminum alloys: estimating the influence of casting parameters. Mater Sci Eng A. 2005;413–414(15):85.

    Article  Google Scholar 

  27. Dantzig JA. Modeling solidification processes using FIDAP. Cryst Res Technol. 1999;34(4):4.

    Article  Google Scholar 

  28. Mahmoudi J, Vynnycky M, Fredriksson H. Modelling of fluid flow, heat transfer and solidification in the strip casting of a copper base alloy (III). Solidification—a theoretical study. Scand J Metall. 2001;30(3):136.

    Article  CAS  Google Scholar 

  29. Friedrich J, Dagner J, Hainkel M, Müller G. Numerical modeling of crystal growth and solidification experiments carried out under microgravity conditions. Cryst Res Technol. 2003;38(7–8):726.

    Article  CAS  Google Scholar 

  30. Zhang Z, Xun J, Shi L. Study on multiple electromagnetic continuous casting of aluminum alloy. J Mater Sci Technol. 2006;22(4):437.

    CAS  Google Scholar 

  31. Zhang ZF, Xu J, Tian ZF, Shi LK. The continuous casting of a semisolid aluminum alloy billet with a multiple magnetic field imposed. J Ceram Process Res. 2006;7(2):152.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2016YFB0300901), the National Natural Science Foundation of China (Nos. U1708251 and U1608252), Liaoning Revitalization Talents Program (No. XLYC1807027), the Fundamental Research Funds for the Central Universities (No. N180905010) and JMRH Program (No. 2020JH2/10700003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Jie Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XJ., Sun, W., Chen, JF. et al. Microstructures and properties of 6016 aluminum alloy with gradient composition. Rare Met. 40, 2154–2159 (2021). https://doi.org/10.1007/s12598-020-01515-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01515-0

Keywords

Navigation