Skip to main content
Log in

Microstructural evolution and aging behavior of Mg–4.5Y–2.5Nd–1.0Gd–0.5Zr alloys with different Zn additions

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Microstructures and mechanical properties of Mg–4.5Y–2.5Nd–1.0Gd–0.5Zr–xZn (x = 0, 0.5, 1.0, and 1.5; wt%) alloys under as-cast and peak-aged states were investigated in this work. The results indicate that the intermetallic phase components are closely dependent on Zn content. Under as-cast state, the dominant eutectic phase is Mg5RE in the alloys with 0 wt% and 0.5 wt% Zn additions while Mg5RE, 18R- and 14H-LPSO (long period stacking ordered) phases in the alloys with 1.0 wt% and 1.5 wt% Zn additions. After solution and peak-aging, the highest strength and hardness were obtained on the alloy with 0.5 wt% Zn addition. Transmission electron microscopy (TEM) characterizations revealed that there are denser and finer precipitates on basal (β′) and prismatic (γ″) planes, respectively. Therefore, the excellent mechanical performance of the alloy with 0.5 wt% Zn addition is mainly due to precipitation strengthening and grain boundary strengthening.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jahedi M, McWilliams BA, Moy P, Knezevic M. Deformation twinning in rolled WE43-T5 rare earth magnesium alloy: influence on strain hardening and texture evolution. Acta Mater. 2017;131:221.

    Article  CAS  Google Scholar 

  2. Guan D, Wynne B, Gao J, Huang Y, Rainforth WM. Basal slip mediated tension twin variant selection in magnesium WE43 alloy. Acta Mater. 2019;170:1.

    Article  Google Scholar 

  3. Wang LQ, Wu GQ, Pan YC, Guan H, Ge DL. Microstructure and mechanical properties of Mg–14Li–Al alloy with multi-micro alloying. Chin J Rare Met. 2019;43(2):134.

    Google Scholar 

  4. Githens A, Ganesan S, Chen Z, Allison J, Sundararaghavan V, Daly S. Characterizing microscale deformation mechanisms and macroscopic tensile properties of a high strength magnesium rare-earth alloy: a combined experimental and crystal plasticity approach. Acta Mater. 2020;186:77.

    Article  CAS  Google Scholar 

  5. Wang LD, Xing CY, Hou XL, Wu YM, Sun JF, Wang LM. Microstructures and mechanical properties of as-cast Mg–5Y–3Nd–Zr–xGd (x = 0, 2 and 4 wt%) alloys. Mater Sci Eng A. 2010;527(7–8):1891.

    Article  Google Scholar 

  6. Kang YH, Yan H, Chen RS. Effects of heat treatment on the precipitates and mechanical properties of sand-cast Mg–4Y–2.3Nd–1Gd–0.6Zr magnesium alloy. Mater Sci Eng A. 2015;645:361.

    Article  CAS  Google Scholar 

  7. Liu ZJ, Wu GH, Liu WC, Song P, Ding WJ. Effect of heat treatment on microstructures and mechanical properties of sand-cast Mg–4Y–2Nd–1Gd–0.4Zr magnesium alloy. Trans Nonferrous Met Soc China. 2012;22(2):1540.

    Article  CAS  Google Scholar 

  8. Liu H, Ning Z, Yi J, Ma Q, Sun H, Huang Y, Sun J. Effect of Dy addition on microstructure and mechanical properties of Mg–4Y–3Nd–0.4Zr alloy. Trans Nonferrous Met Soc China. 2017;27(4):797.

    Article  CAS  Google Scholar 

  9. Zhu SM, Nie JF. Serrated flow and tensile properties of a Mg–Y–Nd alloy. Scr Mater. 2004;50(1):51.

    Article  CAS  Google Scholar 

  10. Wang L, Fang G, Leeflang S, Duszczyk J, Zhou J. Investigation into the hot workability of the as-extruded WE43 magnesium alloy using processing map. J Mech Behav Biomed Mater. 2014;32:270.

    Article  CAS  Google Scholar 

  11. Kumar N, Dendge N, Banerjee R, Mishra R. Effect of microstructure on the uniaxial tensile deformation behavior of Mg–4Y–3RE alloy. Mater Sci Eng A. 2014;590:116.

    Article  CAS  Google Scholar 

  12. Wang XY, Wang FF, Wu KY, Wang XF, Xiao L, Li ZQ, Han ZQ. Experimental study and cellular automaton simulation on solidification microstructure of Mg–Gd–Y–Zr alloy. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01355-7.

    Article  Google Scholar 

  13. Tian Z, Yang Q, Guan K, Meng J, Cao ZY. Microstructure and mechanical properties of a peak-aged Mg–5Y–2.5Nd–1.5Gd–0.5Zr casting alloy. J Alloys Compd. 2018;731:704.

    Article  CAS  Google Scholar 

  14. Suzuki M, Kimura T, Koike J, Maruyama K. Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys. Scr Mater. 2003;48(8):997.

    Article  CAS  Google Scholar 

  15. Su Z, Liu C, Wan Y. Microstructures and mechanical properties of high performance Mg–4Y–2.4Nd–0.2Zn–0.4Zr alloy. Mater Des. 2013;45:466.

    Article  CAS  Google Scholar 

  16. Kang YH, Wu D, Chen RS, Han EH. Microstructures and mechanical properties of the age hardened Mg–4.2Y–2.5Nd–1Gd–0.6Zr (WE43) microalloyed with Zn. J Magnes Alloys. 2014;2:109.

    Article  CAS  Google Scholar 

  17. Ping DH, Hono K, Kawamura Y, Inoue A. Local chemistry of a nanocrystalline high-strength Mg97Y2Zn1 alloy. Philos Mag Lett. 2002;82(10):543.

    Article  CAS  Google Scholar 

  18. Itoi T, Seimiya T, Kawamura Y, Hirohashi M. Long period stacking structures observed in Mg97Zn1Y2 alloy. Scr. Mater. 2004;51(2):107.

    Article  CAS  Google Scholar 

  19. Zhu YM, Morton AJ, Weyland M, Nie JF. Characterization of planar features in Mg–Y–Zn alloys. Acta Mater. 2010;58(2):464.

    Article  CAS  Google Scholar 

  20. Hou XL, Li Y, Lv P, Cai J, Guan FQ. Hot deformation behavior and microstructure evolution of a Mg–Gd–Nd–Y–Zn alloy. Rare Met. 2016;35:532.

    Article  CAS  Google Scholar 

  21. Xu DK, Han EH, Liu L, Xu YB. Influence of higher Zn/Y ratio on the microstructure and mechanical properties of Mg–Zn–Y–Zr alloys. Metall Mater Trans A. 2009;40(A):1727.

    Article  Google Scholar 

  22. Zhang ZQ, Liu X, Wang ZK, Le QC, Hu WY, Bao L, Cui JZ. Effects of phase composition and content on the microstructures and mechanical properties of high strength Mg–Y–Zn–Zr alloys. Mater Des. 2015;88:915.

    Article  CAS  Google Scholar 

  23. Yang Q, Guan K, Li B, Meng F, Lv S, Yu Z, Zhang X, Zhang J, Meng J. Coexistence of 14H and 18R-type long-period stacking ordered (LPSO) phases following a novel orientation relationship in a cast Mg–Al–RE–Zn alloy. J Alloys Compd. 2018;766:902.

    Article  CAS  Google Scholar 

  24. Hagihara K, Li Z, Yamasaki M, Kawamura Y, Nakano T. Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys. Acta Mater. 2019;163:226.

    Article  CAS  Google Scholar 

  25. Yang Q, Lv SH, Qin PF, Qiu X, Hua XR, Guan K, Sun W, Liu XJ, Meng J. Interphase boundary segregation induced phase transformation in a high-pressure die casting Mg–Al–La–Ca–Mn alloy. Mater Des. 2020;190:108566.

    Article  CAS  Google Scholar 

  26. Lv S, LüX Meng F, Yang Q, Qiu X, Qin P, Duan Q, Meng J. Microstructures and mechanical properties in a Gd-modified high-pressure die casting Mg–4Al–3La–0.3Mn alloy. Mater Sci Eng A. 2020;773:138725.

    Article  CAS  Google Scholar 

  27. Li B, Guan K, Yang Q, Niu X, Zhang D, Lv S, Meng F, Huang Y, Hort N, Meng J. Microstructures and mechanical properties of a hot-extruded Mg–8Gd–3Yb–12Zn–0.5Zr (wt%) alloy. J Alloys Compd. 2019;776:666.

    Article  CAS  Google Scholar 

  28. Guan K, Meng F, Qin P, Yang Q, Zhang D, Li B, Sun W, Lv S, Huang Y, Hort N, Meng J. Effects of samarium content on microstructure and mechanical properties of Mg–0.5Zn–0.5Zr alloy. J Mater Sci Technol. 2019;35:1368.

    Article  Google Scholar 

  29. Lv S, Meng F, Lu X, Yang Q, Qiu X, Duan Q, Meng J. Influence of Nd addition on microstructures and mechanical properties of a hot-extruded Mg–6.0Zn–0.5Zr (wt%) alloy. J Alloys Compd. 2019;806:1166.

    Article  CAS  Google Scholar 

  30. Hua X, Yang Q, Zhang D, Meng F, Chen C, You Z, Zhang J, Lv S, Meng J. Microstructures and mechanical properties of a newly developed high-pressure die casting Mg-Zn-RE alloy. J Mater Sci Technol. 2020;53:174.

    Article  Google Scholar 

  31. Wang CY, Cepeda-Jimenez CM, Perez-Prado MT. Dislocation-particle interactions in magnesium alloys. Acta Mater. 2020;194:190.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51701200) and the Scientific and Technological Developing Scheme of Jilin Province (No. 20200801048GH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Yang or Zhan-Yi Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Z., Yang, Q., Guan, K. et al. Microstructural evolution and aging behavior of Mg–4.5Y–2.5Nd–1.0Gd–0.5Zr alloys with different Zn additions. Rare Met. 40, 2188–2196 (2021). https://doi.org/10.1007/s12598-020-01510-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01510-5

Keywords

Navigation