Skip to main content
Log in

Correlation between pass-through flux of cobalt target and microstructure and magnetic properties of sputtered thin films

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Cobalt thin films were deposited on silicon substrates by magnetron sputtering two commercial cobalt targets with different pass-through fluxes (PTFs). The influences of PTF on the magnetic properties of sputtered thin films were investigated. The results indicate that under the same sputtering conditions, cobalt thin film deposited by Co target with high PTF (84.21%) has lower remanence ratio (0.65), while cobalt thin film prepared by Co target with low PTF (69.13%) has higher remanence ratio (0.87). Through introducing an external magnetic field parallel to the film surface during sputtering processes, both the remanence ratios of cobalt thin films prepared by the two targets can be enhanced to approach 1. High-resolution transmission electron microscopy (HRTEM) images show that in the absence of the external magnetic field during sputtering, cobalt thin film deposited by the target with high PTF is randomly oriented in crystallographic orientations, which is due to that Co atoms have no enough time to migrate and diffuse on substrate and the atomic stacking is disordered. It is worth mentioning that crystallographic orientations of cobalt thin film deposited by target with low PTF are relatively consistent, resulting in relatively higher remanence ratio. In addition, HRTEM analysis indicates that the external magnetic field during sputtering drives the Co grains to arrange in a regular order with (002) orientation, leading to the improvement in remanence ratios.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, Molnár S, Roukes ML, Chtchelkanova AY, Treger DM. Spintronics: a spin-based electronics vision for the future. Science. 2011;294(5546):1488.

    Article  Google Scholar 

  2. Qin PX, Yan H, Wang XN, Feng ZX, Guo HX, Zhou XR, Wu HJ, Zhang X, Leng ZGG, Chen HY, Liu ZQ. Noncollinear spintronics and electric-field control: a review. Rare Met. 2020;39(2):95.

    Article  CAS  Google Scholar 

  3. Zhu ZY, Meng L, Chen L. Strain-induced martensitic trans-formation in biomedical Co-Cr-W-Ni alloys. Rare Met. 2020;39(3):241.

    Article  CAS  Google Scholar 

  4. Cai KM, Yang MY, Ju HL, Wang SM, Ji Y, Li BH, Edmonds KW, Sheng Y, Zhang B, Zhang N, Liu S, Zheng HZ, Wang KY. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. Nat Mater. 2017;16(7):712.

    Article  CAS  Google Scholar 

  5. Miao J, Jiang Y. Electric field control of spin transport behaviors in rare metal compounds. Chin J Rare Met. 2017;41(5):487.

    Google Scholar 

  6. Cao Y, Rushforth AW, Sheng Y, Zheng HZ, Wang KY. Tuning a binary ferromagnet into a multistate synapse with spin–orbit-torque-induced plasticity. Adv Funct Mater. 2019;29(25):1808104.

    Article  Google Scholar 

  7. Sheng Y, Edmonds KW, Ma XQ, Zheng HZ, Wang KY. Adjustable current-induced magnetization switching utilizing interlayer exchange coupling. Adv Electron Mater. 2018;4(9):1800224.

    Article  Google Scholar 

  8. Zhang JY, Wu ZL, Wang SG, Zhao CJ, Yang G, Zhang SL, Liu Y, Liu S, Teng J, Yu GH. Effect of interfacial structures on anomalous Hall behavior in perpendicular Co/Pt multilayers. Appl Phys Lett. 2013;102(10):102404.

    Article  Google Scholar 

  9. Cao Y, Li MH, Yang K, Chen X, Yang G, Liu QQ, Yu GH. Enhancement of post-annealing stability in Co/Ni multilayers with perpendicular magnetic anisotropy by Au insertion layers. Rare Met. 2016;35(10):779.

    Article  CAS  Google Scholar 

  10. Fukuma Y, Wang L, Idzuchi H, Takahashi S, Maekawa S, Otani YC. Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves. Nat Mater. 2011;10(7):527.

    Article  CAS  Google Scholar 

  11. Fert A, Cros V, Sampaio J. Skyrmions on the track. Nat Nanotech. 2013;8(3):152.

    Article  CAS  Google Scholar 

  12. Moritz J, Rodmacq B, Auffret S, Dieny B. Extraordinary Hall effect in thin magnetic films and its potential for sensors, memories and magnetic logic applications. J Phys D Appl Phys. 2008;41(13):13500.

    Article  Google Scholar 

  13. Fernando A, Adrian G, Ruben G, Alberto AB, Jose MD, Leticia MC, Pablo O, Miguel AN, Stefania P, Jan V, Manuel V, Pierluigi G, Mariona C, Maria V, Julio C, Rodolfo M, Paolo P. Unraveling Dzyaloshinskii—moriya interaction and chiral nature of graphene/cobalt interface. Nano Lett. 2018;18(9):5364.

    Article  Google Scholar 

  14. Zhang JY, Yang G, Wang SG, Liu YW, Zhao ZD, Wu ZL, Zhang SL, Chen X, Feng C, Yu GH. Effect of MgO/Co interface and Co/MgO interface on the spin dependent transport in perpendicular Co/Pt multilayers. J Appl Phys. 2014;116(16):163905.

    Article  Google Scholar 

  15. Tokaç M, Bunyaev SA, Kakazei GN, Schmool DS, Atkinson D, Hindmarch AT. Interfacial structure dependent spin mixing conductance in cobalt thin films. Phys Rev Lett. 2015;115(5):056601.

    Article  Google Scholar 

  16. Liu T, Lacour D, Montaigne F, Le Gall S, Hehn M, Hauet T. Extraordinary Hall effect based magnetic logic applications. Appl Phys Lett. 2015;106(5):052406.

    Article  Google Scholar 

  17. Layes V, Monje S, Corbella C, Trieschmann J, de los Arcos T, von Keudell A. Species transport on the target during high power impulse magnetron sputtering. Appl Phys Lett. 2017;110(8):081603.

    Article  Google Scholar 

  18. Güttler D, Grötzschel R, Möller W. Lateral variation of target poisoning during reactive magnetron sputtering. Appl Phys Lett. 2007;90(26):263502.

    Article  Google Scholar 

  19. Hernandez Utrera O, Abundiz-Cisneros N, Sanginés R, Diliegros-Godines CJ, Machorro R. Cleaning level of the target before deposition by reactive direct current magnetron sputtering. Thin Solid Films. 2018;646:98.

    Article  CAS  Google Scholar 

  20. Kawasaki H, Ohshima T, Yagyu Y, Ihara T, Shinohara M, Suda Y. Preparation of metal doped SiO2 films by magnetron sputtering deposition using metal oxide mixture powder target. Trans Mater Res Soc Jpn. 2018;43(1):27.

    Article  CAS  Google Scholar 

  21. Dogancan S, Ziya Cagri T, Yunus Eren K, Tayfur O. Preparation of La0.8Sr0.2CoO3-δ sputtering targets using a deformable compaction die. Ceram Int. 2017;43(17):15185.

    Article  Google Scholar 

  22. Hoon C. Development of copper sputtering target with superior sputter yield via crystallographic texture control annealing. Mod Phys Lett B. 2009;23(31):3893.

    Google Scholar 

  23. Mei FS, Yuan TC, Li RD, Qin K, Wang WJ, Zhou LB, Yuan ZY. Effects of element chemical states and grain orientation growth of ITO targets on photoelectric properties of the film. Ceram Int. 2017;43(17):14732.

    Article  CAS  Google Scholar 

  24. Lee M, Hayakawa J, Ikeda S, Matsukura F, Ohno H. Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl Phys Lett. 2007;90(21):212507.

    Article  Google Scholar 

  25. Ikeda S, Hayakawa J, Ashizawa Y, Lee YM, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H. Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett. 2008;93(8):082508.

    Article  Google Scholar 

  26. Boydens F, Leroy WP, Persoons R, Depla D. The influence of target surface morphology on the deposition flux during direct-current magnetron sputtering. Thin Solid Films. 2013;531:32.

    Article  CAS  Google Scholar 

  27. Tesař J, Martan J, Rezek J. On surface temperatures during high power pulsed magnetron sputtering using a hot target. Surf Coat Technol. 2011;206(6):1155.

    Article  Google Scholar 

  28. Kozák T. Effect of the target power density on high-power impulse magnetron sputtering of copper. Plasma Sources Sci Technol. 2012;21(2):025012.

    Article  Google Scholar 

  29. Zhang H, John P, Rick E, Mark K. Cobalt sputtering target and sputter deposition of Co thin films for cobalt silicide metallization. J Vac Sci Technol A. 1999;17(4):1904.

    Article  CAS  Google Scholar 

  30. Nouvellon C, Lefevre P, Dauchot JP, Papantonio R, Hecq M. Target utilization improvement by pole pieces insertion in a magnetron sputtering target. Plasma Process Polym. 2007;4(S1):S637.

    Article  Google Scholar 

  31. Lisfi A, Lodder JC. Magnetic domains in Co thin films obliquely sputtered on a polymer substrate. Phys Rev B. 2001;63(17):174441.

    Article  Google Scholar 

  32. Agudelo-Giraldo JD, Restrepo-Parra E, Landau DP. A study of magnetic domains in thin films from FM and AFM interactions. Phys A. 2019;517:542.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Key R&D Program of China (No. 2017YFB0305502), the National Natural Science Foundation of China (Nos. 51571017, 51671023, and 51871018), the Beijing Natural Science Foundation (No. 2192031), the Key Science and Technology Projects of Beijing Education Committee (No. KZ201810011013), and the Fundamental Research Funds for the Central Universities (No. FRF-TP-19-011B1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Feng or Guang-Hua Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, XL., Huang, QM., Feng, GN. et al. Correlation between pass-through flux of cobalt target and microstructure and magnetic properties of sputtered thin films. Rare Met. 40, 975–980 (2021). https://doi.org/10.1007/s12598-020-01500-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01500-7

Keywords

Navigation