Skip to main content
Log in

Effect of impurities and defect in thermal conductivity of lead sulphide

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The phenomenon of heat conduction is important in semiconductor devices. This property is investigated on the basis of modified Callway model. The formalism was carried out using Hamiltonian, phonon Green’s function and equation of motion techniques for various scattering events. It was found that every scattering mechanism is independent of each other and does not affect the others. The thermal conductivity of lead sulphide (PbS) semiconductor has been studied on the basis of this concept. The results of the present model are in good agreement with experimental results and the model shows good future scope with other semiconductors and superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. W Ma, J M Luther, H Zheng, Y Wu and A P Alivisatos, Nano Lett. 9, 2072 (2009)

    Google Scholar 

  2. V L Colvin, M C Schlamp and A P Alivisatos, Nature 370, 354 (1994)

    Article  ADS  Google Scholar 

  3. M Law, M C Beard, S Choi, J M Luther, M C Hanna and A J Nozik, Nano Lett. 8, 3904 (2008)

    Article  ADS  Google Scholar 

  4. S Ahmad, S Bhattacharya, A Singh, R Basu, R Bhatt, A K Bohra, K P Muthe and S C Gadkari, AIP Conf. Proc. 1832,110008 (2017)

    Article  Google Scholar 

  5. M J Skelton, S C Parker, A Togo, I Tanaka and A Walsh, Phys. Rev. B 205203 (2014)

  6. E H Putley and J B Arthur, Proc. Phys. Soc. Ser. B 64 (7), 616 (1951)

    Article  ADS  Google Scholar 

  7. F Bischeff, L C Maxwell, D E Richard and N R Franklin, J. Pharmacol. Exp. Therap. 34(1), 85 (1928)

    Google Scholar 

  8. E S Bozin, C D Malliakas, P Souvatzis, T Proffen, N A Spaldin, M G Kanatzidis and S J L Billinge, Science 330,1660 (2010)

    Article  ADS  Google Scholar 

  9. O Delaire, J Ma, K Marty, A F May, M A McGuire, M Du, D J Singh, A Podlesnyak, G Ehlers, M D Lumsde and B C Sales, Nature Mater. 10, 614 (2011)

    Article  ADS  Google Scholar 

  10. S Kastbjerg, N Bindzus, M Sondergaard, S Johnsen, N Lock, M Christensen, M Takata, M A Spackman and B B Iversen, Adv. Func. Mater. 23, 5477 (2013)

    Article  Google Scholar 

  11. C Ramkumar, K P Jain and S C Abbi, Phys. Rev. B 53, 13672 (1996)

    Article  ADS  Google Scholar 

  12. Cornaton, M Ringholm, O Lauant and K Ruud, Phys. Chem. Chem. Phys. 18, 4201 (2016)

    Article  Google Scholar 

  13. M Cordona and T Ruf, Solid State Commun. 117, 201 (2001)

    Article  ADS  Google Scholar 

  14. T Keiber, F Bridges and B C Sales, Phys. Rev. Lett. 111, 095504 (2013)

    Article  ADS  Google Scholar 

  15. H Kim and M Kaviany, Phys, Rev. B 86, 045213 (2012)

    Article  ADS  Google Scholar 

  16. D Greig, Phys. Rev. 120, 358 (1960)

    Article  ADS  Google Scholar 

  17. Y Zhang, X Ke, C Chen, J Yang and P R C Kent, Phys. Rev. B 80, 024304 (2009)

    Article  ADS  Google Scholar 

  18. T Jia, G Chen and Y Zhang, Phys. Rev. B 95, 155206 (2017)

    Article  ADS  Google Scholar 

  19. N Shulumba, O Hellman and A J Minnich, Phys. Rev. B 95, 014302 (2017)

    Article  ADS  Google Scholar 

  20. L Wei, J Chen, Q Y He and W Teng, J. Alloys Compds 584, 381 (2014)

    Article  Google Scholar 

  21. R Dingle, W Wiegmann and C H Henry, Phys. Rev. Lett. 33, 827 (1974)

    Article  ADS  Google Scholar 

  22. J Callaway, Phys. Rev. 113,1046 (1959)

    Article  ADS  Google Scholar 

  23. B D Indu, Int. J. Mod. Phys. B 4,1379 (1990)

    Article  ADS  Google Scholar 

  24. R P Gairola, Phys. State Solidi B 125, 65 (1984)

    Article  ADS  Google Scholar 

  25. K N Pathak, Phys. Rev. A 139, 1569 (1965)

    Article  ADS  Google Scholar 

  26. P K Sharma and R Bahadur, Phys. Rev. B 12, 1522 (1975)

    Article  ADS  Google Scholar 

  27. D N Zubarev, Usp. Fiz. Nauk 71, 71 (1960)

    Article  Google Scholar 

  28. H B G Casimir, Physica 5, 495 (1938)

    Article  ADS  Google Scholar 

  29. P Hyldgaard and G D Mahan, Phys. Rev. B 56, 10754 (1997)

    Article  ADS  Google Scholar 

  30. G Chen, J. Heat Trans. 119, 220 (1997)

    Article  Google Scholar 

  31. B D Indu, Mod. Phys. Lett. B 6, 1665 (1992)

    Article  ADS  Google Scholar 

  32. B P Bahuguna, C P Painuli and B D Indu, Acta Phys. Pol. A 80, 527 (1991)

    Article  ADS  Google Scholar 

  33. V Ashokan, B D Indu and A Kr Dimri, AIP Adv. 1, 032101-1 (2011)

    Article  ADS  Google Scholar 

  34. R Saini, V Ashokan and B D Indu, Superlatt. Microstruct. 82, 574 (2015)

    Article  ADS  Google Scholar 

  35. P G Klemens, Proc. R. Soc. (London) A 68, 1113 (1965)

    Article  ADS  Google Scholar 

  36. P Erdos and S B Halley, Phys. Rev. 184, 951 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richa Saini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saini, R. Effect of impurities and defect in thermal conductivity of lead sulphide. Pramana - J Phys 94, 117 (2020). https://doi.org/10.1007/s12043-020-01981-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01981-2

Keywords

PACS

Navigation