Skip to main content

Advertisement

Log in

Chitosan-based glycerol-plasticized membranes: bactericidal and fibroblast cellular growth properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Chitosan-based glycerol-plasticized membranes were prepared aiming to develop low-cost and biocompatible material for wound dressing. They were produced by casting/solvent evaporation, and their formation mechanisms were attributed to intra- and inter-hydrogen bonds between materials. The results show that the glycerol acted as plasticizer and changed the proliferation of fibroblast cells on chitosan membranes. A high increase in the contact angle between water and membrane was observed comparing pure chitosan (more hydrophilic) and chitosan-glycerol (more hydrophobic) membranes. The angle values were found to be ~ 40 and ~ 130 degrees for chitosan and chitosan/glycerol 30% (w/w) membranes, respectively. In comparison with pure chitosan, glycerol-mixed membranes showed lower glass transition temperatures and are less brittle when handling. The antibacterial properties of such membranes against Gram-negative (E. coli) and Gram-positive (S. aureus and B. Cereus) microorganisms were tested, showing efficient growth inhibition. In vitro studies over fibroblast cells using plasticized membranes demonstrated good viability and enhanced cell proliferation in comparison with those composed of pure chitosan. Such results suggest that the as-prepared chitosan-glycerol membrane is a promising material for use as wound dressing in tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clark RAF, Ghosh K, Tonnesen MG (2007) Tissue engineering for cutaneous wounds. J Invest Dermatol 127:1018–1029. https://doi.org/10.1038/sj.jid.5700715

    Article  CAS  PubMed  Google Scholar 

  2. Madison KC (2003) Barrier function of the skin: “La Raison d’Être” of the epidermis. Epidermal Barrier Funct 121:231–241. https://doi.org/10.1046/j.1523-1747.2003.12359.x

    Article  CAS  Google Scholar 

  3. Okonkwo UA, Dipietro LA (2017) Diabetes and wound angiogenesis. Int J Mol Sci 18:1–15. https://doi.org/10.3390/ijms18071419

    Article  CAS  Google Scholar 

  4. Cristina A, Gonzalez DO (2016) Wound healing—A literature review *. An Bras Dermatol 91:614–620

    Article  Google Scholar 

  5. Murphy PS, Evans GRD (2012) Advances in wound healing: a review of current wound healing products. Plast Surg Int. https://doi.org/10.1155/2012/190436

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mi F, Shyu S, Wu Y et al (2001) Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 22:165–173

    Article  CAS  PubMed  Google Scholar 

  7. Mir M, Najabat M, Afifa A et al (2018) Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 7:1–21. https://doi.org/10.1007/s40204-018-0083-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stejskalová A, Almquist BD (2017) Biomaterials science wound repair scholarship to pursue. Biomater Sci 5:1421–1434. https://doi.org/10.1039/c7bm00295e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF (2004) Chitosan membrane as a wound-healing dressing: characterization and clinical application. Wiley Period Inc, Hoboken, pp 216–222. https://doi.org/10.1002/jbm.b.30000

  10. He J, Cui WTQHS (2016) Fabrication of silk fibroin/cellulose whiskers – chitosan composite porous scaffolds by layer-by-layer assembly for application in bone tissue engineering. J Mater Sci 51:4399–4410. https://doi.org/10.1007/s10853-016-9752-7

    Article  CAS  Google Scholar 

  11. Miguel SP, Moreira AF, Correia IJ (2019) Chitosan based-asymmetric membranes for wound healing: a review. Int J Biol Macromol 127:460–475. https://doi.org/10.1016/j.ijbiomac.2019.01.072

    Article  CAS  PubMed  Google Scholar 

  12. Colobatiu L, Gavan A, Mocan A et al (2019) Development of bioactive compounds-loaded chitosan films by using a QbD approach—A novel and potential wound dressing material. React Funct Polym 138:46–54. https://doi.org/10.1016/j.reactfunctpolym.2019.02.013

    Article  CAS  Google Scholar 

  13. Chen X, Zhang M, Wang X et al (2017) Peptide-modified chitosan hydrogels promote skin wound healing by enhancing wound angiogenesis and inhibiting inflammation. Am J Transl Res 9:2352–2362

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma Y, Xin L, Tan H et al (2017) Materials science & engineering C Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Mater Sci Eng C 81:522–531. https://doi.org/10.1016/j.msec.2017.08.052

    Article  CAS  Google Scholar 

  15. Sánchez- DI, López-cervantes J (2014) Chitosan/hydrophilic plasticizer-based films: preparation, physicochemical and antimicrobial properties. J Polym Environ 22:41–51. https://doi.org/10.1007/s10924-013-0621-z

    Article  CAS  Google Scholar 

  16. Salgado CL, Sanchez EMS, Mano JF, Moraes AM (2012) Characterization of chitosan and polycaprolactone membranes designed for wound repair application. 659–667. https://doi.org/10.1007/s10853-011-5836-6

  17. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182. https://doi.org/10.1016/j.carbpol.2008.11.002

    Article  CAS  Google Scholar 

  18. Caetano GF, Frade MAC, Andrade TAM et al (2015) Chitosan-alginate membranes accelerate wound healing. J Biomed Mater Res B Appl Biomater 103:1013–1022. https://doi.org/10.1002/jbm.b.33277

    Article  CAS  PubMed  Google Scholar 

  19. Bakshi PS, Selvakumar D, Kadirvelu K, Kumar NS (2018) Comparative study on antimicrobial activity and biocompatibility of N-selective chitosan derivatives. React Funct Polym 124:149–155. https://doi.org/10.1016/j.reactfunctpolym.2018.01.016

    Article  CAS  Google Scholar 

  20. Goy RC, de Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polímeros 19:241–247. https://doi.org/10.1590/S0104-14282009000300013

    Article  CAS  Google Scholar 

  21. Costa EM, Silva S, Vicente S et al (2017) Chitosan nanoparticles as alternative anti-staphylococci agents: bactericidal, antibiofilm and antiadhesive effects. Mater Sci Eng C 79:221–226. https://doi.org/10.1016/j.msec.2017.05.047

    Article  CAS  Google Scholar 

  22. Dallan PRM, da Moreira P LM, Petinari L et al (2007) Effects of chitosan solution concentration and incorporation of chitin and glycerol on dense chitosan membrane properties. J Biomed Mater Res Appl Biomater 80:394–405. https://doi.org/10.1002/jbmb

    Article  Google Scholar 

  23. Matica MA, Aachmann FL, Tondervik A et al (2019) Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. Int J Mol Sci 20:5889–5922

    Article  CAS  PubMed Central  Google Scholar 

  24. Kumari S, Singh RP (2013) Glycolic acid-functionalized chitosan-Co 3 O 4 -Fe 3 O 4 hybrid magnetic nanoparticles-based nanohybrid scaffolds for drug-delivery and tissue engineering. J Mater Sci 48:1524–1532. https://doi.org/10.1007/s10853-012-6907-z

    Article  CAS  Google Scholar 

  25. Kalaiselvimary J, Ramesh Prabhu M (2019) Fabrications and investigation of physicochemical and electrochemical properties of heteropoly acid-doped sulfonated chitosan-based polymer electrolyte membranes for fuel cell applications. Polym Bull 76:1401–1422. https://doi.org/10.1007/s00289-018-2445-4

    Article  CAS  Google Scholar 

  26. Merlusca IP, Matiut DS, Lisa G et al (2018) Preparation and characterization of chitosan–poly(vinyl alcohol)–neomycin sulfate films. Polym Bull 75:3971–3986. https://doi.org/10.1007/s00289-017-2246-1

    Article  CAS  Google Scholar 

  27. Kumar NVMR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27. https://doi.org/10.1016/S1381-5148(00)00038-9

    Article  CAS  Google Scholar 

  28. Escárcega-Galaz AA, Sánchez-Machado DI, López-Cervantes J et al (2018) Mechanical, structural and physical aspects of chitosan-based films as antimicrobial dressings. Int J Biol Macromol 116:472–481. https://doi.org/10.1016/j.ijbiomac.2018.04.149

    Article  CAS  PubMed  Google Scholar 

  29. Kenawy E, Omer AM, Tamer TM et al (2019) Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications. Int J Biol Macromol 139:440–448. https://doi.org/10.1016/j.ijbiomac.2019.07.191

    Article  CAS  PubMed  Google Scholar 

  30. Chen M, Runge T, Wang L et al (2018) Hydrogen bonding impact on chitosan plasticization. Carbohydr Polym 200:115–121. https://doi.org/10.1016/j.carbpol.2018.07.062

    Article  CAS  PubMed  Google Scholar 

  31. Pavinatto A, Victoria A, Mattos DA et al (2020) International Journal of Biological Macromolecules Coating with chitosan-based edible fi lms for mechanical/biological protection of strawberries. Int J Biol Macromol 151:1004–1011. https://doi.org/10.1016/j.ijbiomac.2019.11.076

    Article  CAS  PubMed  Google Scholar 

  32. Maria VD, Bernal C, Francois NJ (2017) Development of biodegradable films based on chitosan/glycerol blends suitable for biomedical applications. J Tissue Sci Eng. https://doi.org/10.4172/2157-7552.1000187

    Article  Google Scholar 

  33. Nady N, Kandil SH (2018) Novel blend for producing porous chitosan-based films suitable for biomedical applications. https://doi.org/10.3390/membranes8010002

    Article  Google Scholar 

  34. Souza NLGD, Munk M, Brandão HM, de Oliveira LFC (2018) Functionalization of poly(epichlorohydrin) using sodium hydrogen squarate: cytotoxicity and compatibility in blends with chitosan. Polym Bull 75:4627–4639. https://doi.org/10.1007/s00289-018-2290-5

    Article  CAS  Google Scholar 

  35. Follmann HDM, Naves AF, Martins AF et al (2016) Advanced fibroblast proliferation inhibition for biocompatible coating by electrostatic layer-by-layer assemblies of heparin and chitosan derivatives. J Colloid Interf Sci 474:9–17. https://doi.org/10.1016/j.jcis.2016.04.008

    Article  CAS  Google Scholar 

  36. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  37. Chen S, Hao Y, Cui W et al (2013) Biodegradable electrospun PLLA/chitosan membrane as guided tissue regeneration membrane for treating periodontitis. J Mater Sci 48:6567–6577. https://doi.org/10.1007/s10853-013-7453-z

    Article  CAS  Google Scholar 

  38. Epure V, Griffon M, Pollet E, Avérous L (2011) Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydr Polym 83:947–952. https://doi.org/10.1016/j.carbpol.2010.09.003

    Article  CAS  Google Scholar 

  39. Desbrie J, Brugnerotto J, Lizardi J, et al (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer (Guildf) 42

  40. Zhang D, Yang S, Zhang K et al (2018) Shape memory effect of chitosan/glycerol composite film in mixed water/ethanol solution. J Appl Polym Sci 47037:1–7. https://doi.org/10.1002/app.47037

    Article  CAS  Google Scholar 

  41. Leceta I, Guerrero P, De La Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93:339–346. https://doi.org/10.1016/j.carbpol.2012.04.031

    Article  CAS  PubMed  Google Scholar 

  42. Clinical an Laboratory Standards Institute - CLSI - (2018) Performance standards for antimicrobial disk susceptibility tests, 13th edn. https://clsi.org/standards/products/microbiology/documents/m02/

  43. Matuschek E, Brown DFJ, Kahlmeter G (2014) Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 20:255–266. https://doi.org/10.1111/1469-0691.12373

    Article  Google Scholar 

  44. Heather E, Foster DS, Longaker MT (2018) Fibroblasts and wound healing: an update. Regen Med 13:491–495

    Article  Google Scholar 

  45. Bainbridge P, Healing W, Repair T (2013) Wound healing and the role of fibroblasts. J Wound Care 22:407–412

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was partly financed by the Coordination for the Improvement in Higher Education Personnel – CAPES - Brazil (Finance Code 001), the São Paulo Research Foundation – FAPESP (Grant number: 2017/19470-8) and the National Council for Scientific and Technological Development – CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Pavinatto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caroni, J.G., de Almeida Mattos, A.V., Fernandes, K.R. et al. Chitosan-based glycerol-plasticized membranes: bactericidal and fibroblast cellular growth properties. Polym. Bull. 78, 4297–4312 (2021). https://doi.org/10.1007/s00289-020-03310-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03310-4

Keywords

Navigation